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Abstract—Zoned Namespace (ZNS) is an emerging SSD in-
terface with great potential for performance and cost in large-
scale cloud SSD deployments. Enabling in-storage hardware
compression on ZNS SSDs is promising for further enhancing the
cost-effectiveness of ZNS-based storage infrastructures. However,
based on our investigation, existing solutions based on the host-
transparent methodology are sub-optimal on ZNS SSDs due to
two intrinsic challenges: (1) locating compressed chunks and (2)
harvesting space savings from compression.

In this paper, we for the first time revisit the compression
storage system architecture on the emerging ZNS SSD and
propose to decouple compression execution with indexing. We
propose CCZNS (CC: collaborative compression), an advanced
ZNS interface that revives in-storage hardware compression on
ZNS SSDs through a novel host-SSD collaborative approach. We
present how CCZNS can benefit host software by performing
a case study on RocksDB and ZenFS. Extensive experiments
demonstrate that the CCZNS-based storage system significantly
outperforms existing system solutions.

I. INTRODUCTION

Zoned Namespace (ZNS) is an emerging SSD interface that
eliminates the block interface tax in terms of performance and
cost [20], [30]. Logically, ZNS divides the storage space into
zones, each of which can be read randomly but only written
sequentially. Each zone is associated with a set of physical
flash blocks and thus can not be overwritten until explicitly
reset by the host. On the one hand, ZNS naturally couples
logical and physical addresses in a zone, avoiding the fine-
grained page-level mapping overhead. On the other hand, ZNS
eliminates device-level garbage collection, and host software
can holistically optimize data placement and reclamation, lead-
ing to better system performance and reduced over-provisioned
flash space. As the global data volume rapidly explodes, ZNS
SSD is a promising low-cost storage solution scaling for the
zettabyte data era and has demonstrated the potential in large-
scale cloud environments [29], [103].

With the same goal of lowering system costs, data compres-
sion is a crucial technique for modern storage systems. How-
ever, host-side compression solutions (i.e., using host CPUs
or external/on-chip hardware accelerators) face challenges
in performance. Performing compression by host CPUs can
significantly degrade system performance while consuming
excessive CPU resources [62], [69]. On the other hand, despite
the higher compression performance, external/on-chip hard-
ware accelerators exhibit unsatisfactory performance when
data is (de)compressed in small chunks due to round-trip data
movements via the PCIe interface.

The emerging in-storage hardware compression, which has
gained industry support [8], [14], [16], can well address the
challenges mentioned above. FPGA- or ASIC-based hardware
compression engines are integrated into the SSD, shifting
the compression execution from the host to the SSD itself.
This delivers a boosted compression performance (which can
also scale with the number of SSDs), significantly relieves
host CPU usage, and eliminates the data round-trip overhead
between external/on-chip accelerators. Our commercially de-
ployed ASIC-based compression engines can achieve com-
pression and decompression throughput of up to 11GB/s and
14GB/s, respectively, with only about 5% extra area size on
the SSD controller.

Given these merits, enabling in-storage hardware compres-
sion on ZNS SSDs is promising for augmenting cost-efficient
ZNS-based storage infrastructures. Nevertheless, potential so-
lutions oriented from the existing host-transparent method-
ology are sub-optimal on ZNS SSDs due to two intrinsic
challenges: (1) locating compressed chunks and (2) harvesting
space savings from compression (see §II-C). The state-of-the-
art host-transparent attempt [93] significantly sacrifices write
amplification and write performance, defeating the potential
of in-storage hardware compression in the first place.

In this paper, we revisit the compression-enabled storage
system architecture on the emerging ZNS SSD. Our key in-
sight is that, given the coupled logical and physical addresses
within each zone, host software can leverage existing fine-
grained indexes to directly manage compressed data inside the
SSD, which can well resolve the aforementioned challenges.
However, since compression execution and indexing are now
decoupled into opposite sides, there exist two key obstacles
to such cross-layer management. The first is to maintain a
uniform view of data, because in-storage compression alters
both data addresses and sizes, which can not be automatically
synchronized to the host. The second is to bypass the logical
block granularity (e.g., 4KB) entrenched in the I/O stack
and achieve high space savings as the host-side compression
solutions (i.e., at byte granularity).

We propose CCZNS (CC: collaborative compression), an
advanced ZNS interface that revives in-storage hardware com-
pression through a novel host-SSD collaborative approach.
Unlike existing compression-enabled storage system architec-
tures, CCZNS offloads only compression execution to the SSD
but responds the post-compression information to the host for
index maintenance (see Figure 1). CCZNS performs cross-
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Fig. 1. Existing and our proposed compression-enabled storage system
architectures.

layer management through a set of CC-specific read/write
commands (i.e., CW and DR), integrating compression of-
floading and information responding into traditional read/write
commands through the NVMe metadata field. To maintain a
uniform data view between host and SSD, we implement bi-
directional NVMe metadata transfer in the NVMe driver of
the Linux kernel, so that host software can extract the returned
information from the SSD and update the indexes accordingly
(see §III-B). To harvest the space saved by compression
maximally, CCZNS revamps both CC-specific commands and
storage management as byte-addressable (see §III-D). CCZNS
is also carefully refined to collaborate with host software with
rich and diverse characteristics, such as different compres-
sion granularity (see §III-C) and compatibility requirements
(see §III-E).

We present how CCZNS can benefit host software by
performing a case study on RocksDB [13], the mainstream
application of ZNS, and its filesystem backend ZenFS [21]
(see §IV). We use both micro- and macro-benchmarks and
diverse comparison groups (i.e., host CPU using different
algorithms, ASIC-based external Intel®QAT card [18], and
the state-of-the-art work [93]) to evaluate CCZNS compre-
hensively (see §V). Experiments on raw SSD access show
that, due to hardware compression engines, the read and
write throughput of CCZNS can exceed the theoretical flash
bandwidth to up to 1.4× and 3.1×, respectively. Evaluation
on RocksDB shows that the CCZNS-based storage system
achieves the best-level write volume reduction and host CPU
usage, as well as up to 3.6× and 1.3× throughput improvement
in YCSB Load (write-only) and other macro-benchmarks,
respectively. Compared to the state-of-the-art work Balloon-
ZNS [93], CCZNS further reduces write volume by 12.6%
while improving write throughput by 65.3%. We open-source
the code for public use on GitHub1.

II. BACKGROUND AND MOTIVATION

A. Flash-based SSD and Zoned Namespace (ZNS)

Flash-based SSD adopts a multi-level architecture including
channel, die, plane, block, and page. The flash die is the
minimum unit of parallel operations while the flash page
is the minimum unit of storage. To improve SSD firmware
management efficiency, flash blocks are typically grouped into

1 https://github.com/yingjia-wang/CCZNS

superblocks, each of which comprises flash blocks across
many flash dies to fully leverage flash parallelism.

The block interface has been a widely used standard for
flash-based SSDs. Despite providing a simple abstraction for
users, it necessitates a burdensome flash translation layer
(FTL) inside the SSD to hide the underlying flash erase-before-
write characteristics. This leads to the well-known block inter-
face tax [30], [31], [59], which is further exacerbated as the
flash technology is evolving towards high-density forms [71],
[88]. On the one hand, the logical-to-physical address mapping
table requires large on-board DRAM (e.g., about 0.1% of the
SSD capacity [53]), which considerably raises the hardware
cost. On the other hand, the FTL performs background garbage
collection (GC) to reclaim available space, which is the
culprit of performance degradation and instability; therefore,
block-interface SSD typically employs a non-trivial amount
of flash over-provisioned (OP) space to counteract the effects
of GC, which is reported to be up to 50% in Facebook’s
CacheLib [28].

Zoned Namespace (ZNS) is an emerging SSD interface that
aims to avoid the block interface tax [20], [30]. ZNS divides
the storage space into zones, each of which can only be written
sequentially and is typically mapped to a flash superblock.
Compared to the preceding Open-Channel interface [31], ZNS
provides a moderate zone abstraction that not only supports
cross-layer optimization (e.g., data placement, garbage collec-
tion, and I/O scheduling) but also facilitates easier adoption
and software upkeep. ZNS eliminates the block interface tax
in the following two aspects. First, due to the sequential write
constraint, the logical and physical addresses within a zone
are naturally coupled. Thus, ZNS SSD only requires a coarse-
grained zone-level mapping table, which substantially lowers
the on-board DRAM equipment (e.g., 10-20× smaller than that
in traditional SSDs [27]). Second, ZNS shifts GC control upper
to the host and eliminates the device-level GC. The host can
then leverage software behaviors and workload characteristics
for holistic management, leading to higher throughput, better
performance predictability, and lower write amplification. As
a result, ZNS can greatly reduce the amount of flash OP
space [30], [48].

B. Compression-Enabled Storage System Architectures

Existing compression-enabled storage systems2 adopt four
representative architectures (i.e., host CPU compression, ex-
ternal hardware compression, on-chip hardware compression,
and in-storage hardware compression). In the following, we
present a comprehensive study of them, and their comparisons
are demonstrated in Table I.

1) Host CPU Compression: Host CPU compression di-
rectly uses CPU cores to (de)compress data on the host-side
I/O path. Meanwhile, host software maintains the indexes of
chunks to ensure correct decompression afterward. Here, a
chunk represents an independent compression unit, and an
index includes the logical address and size of a chunk (at

2In this paper, we focus on lossless data compression.

https://github.com/yingjia-wang/CCZNS


TABLE I
COMPARISONS OF REPRESENTATIVE COMPRESSION-ENABLED

STORAGE SYSTEM ARCHITECTURES [37], [98], [100].

CPU External On-Chip In-Storage
Cost reduction ✓ ✓✗ ✓ ✓
Low CPU overhead ✗ ✓ ✓ ✓

Hardware-accel. perf. ✗ ✓✗ ✓✗ ✓
Perf. scalability ✗ ✗ ✗ ✓

byte granularity). Host CPU compression supports various
compression algorithms and levels simply by invoking their
software libraries. Lightweight compression algorithms (e.g.,
Snappy [17], LZ4 [12]) provide fast compression speeds with
compromised compression ratios. On the other hand, standard
compression algorithms (e.g., ZSTD [23], deflate/Gzip [40])
can achieve higher compression ratios for more storage sav-
ings, albeit at the cost of higher computational overhead.

Due to its ease and flexibility, host CPU compression is
the most popular method without dependencies on hardware
accelerators. However, CPU is difficult to balance compression
ratio and system performance. Employing standard compres-
sion algorithms not only considerably degrades the system
performance but also leads to substantially high CPU uti-
lization that potentially jeopardizes other compute-intensive
tasks. Google’s datacenters consume 2.9% of CPU cycles on
(de)compression tasks and 10%-50% in some key services,
even so, 95% data has to sacrifice compression ratio for bal-
ancing performance [62]. Pangu, the unified storage system for
Alibaba Group and Alibaba Cloud, faces the CPU bottleneck
that limits its theoretical throughput [69].

2) External Hardware Compression: To improve compres-
sion performance and alleviate host CPU utilization, previous
studies explore how to offload compression onto external
hardware compression accelerators, such as GPU [75], [85],
[102], FPGA [33], [41], [79], DPU [70], and ASIC [49]. How-
ever, these PCIe-connected accelerators necessitate software
adaptations and also round-trip data transfer between host and
accelerators. The indexes of chunks are still maintained by
host software and updated after chunks are compressed and
transferred back to the host.

Due to the round-trip data transfer, offloading compression
to external hardware accelerators is not efficient for small
chunks [49], [55]. Many host software organizes data into
smaller chunks to reduce computation and mitigate I/O latency
during decompression. For example, both RocksDB [13] and
RedHat VDO [2] employ 4KB-chunk-based compression by
default. QZFS, a filesystem integrating ASIC-based Intel®QAT
card, still uses CPU compression when the chunk size is less
than 4KB [49]. Cache in modern datacenters also organizes
data into small chunks for low-latency read services [26], [55],
[96]. These common cases can not reap significant perfor-
mance improvement from external hardware accelerators.

In addition, employing these external accelerators for com-
pression leads to the occupancy of valuable PCIe lanes and
is also detrimental to system costs. Since these accelerators

TABLE II
COMPRESSION THROUGHPUT OF ON-CHIP/EXTERNAL QAT UNDER
THREE DATASETS WITH A WIDE RANGE OF COMPRESSION RATIOS

(CR). THE CHUNK SIZE IS 4KB.

ooffice(CR≈1.6) mozilla(CR≈2.6) nci(CR≈5.9)
On-Chip QAT 1446.6MB/s 1919.3MB/s 2782.2MB/s
External QAT 1263.8MB/s 1629.0MB/s 1857.6MB/s

are designed to be either general-purpose or support multiple
functions, users have to afford higher costs of the devices and
functions.

3) On-Chip Hardware Compression: Intel has announced
the on-chip integration of accelerators with some of the latest
CPU products (e.g., Intel®Xeon®Scalable Processors) [64],
[98]. Compared to the off-chip or external form, this architec-
ture not only achieves higher cost efficiency but also enables
the accelerators to exploit (1) the CPU’s powerful memory
subsystem and (2) a hardware/software co-designed ecosystem
consisting of SoC-level hardware features and comprehensive
software stacks [98].

However, on-chip hardware compression can not fundamen-
tally change the landscape where the small-chunk compression
performance is unsatisfactory, since on-chip accelerators are
still PCIe components and data movements between the CPU
and the accelerator are still constrained. We conducted ex-
periments on an Intel®Xeon®Platinum 8458P Processor [19]
with on-chip QAT and compared the results with those on an
external QAT card (i.e., Intel®QuickAssist Adapter 8970 [18]).
Particularly, we use QATzip [11] to compress three datasets in
the popular Silesia corpus with a wide range of compression
ratios [15]. The results are shown in Table II. We can see
that, compared to external QAT, the small-chunk performance
of on-chip QAT is higher but still much below the specified
bandwidth (e.g., a dozen GB/s).

4) In-Storage Hardware Compression: Recently, compu-
tational SSDs with in-storage hardware compression have
emerged and gained industry traction (e.g., CSD series from
ScaleFlux [14], SmartSSD from Samsung [16], and Roealsen6
from DapuStor [8]). These SSDs incorporate hardware com-
pression engines inside and shift (de)compression tasks from
the host to the SSD itself. To comply with the block interface,
these SSDs perform compression in a host-transparent manner,
and we call them TCSSDs (TC: transparent compression) in
the following for simplicity.

To summarize, TCSSD exhibits the following advantages:
• High compression performance. Our ASIC-based compres-

sion engines that have been commercially deployed offer up
to 11GB/s and 14GB/s compression/decompression band-
width with only 5% extra area size on the SSD controller.
The inline hardware compression on the device-side I/O path
is also efficient for small chunks because it does not involve
additional round-trip data movement.

• Performance scalability. The compression performance can
scale up with the number of SSDs, as each SSD has its own
compression engines for performance acceleration.
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Fig. 2. Two intrinsic challenges to the host-transparent methodology.

• Low CPU overhead. Host CPU utilization can be signifi-
cantly reduced through compression offloading. Since the
(de)compression bandwidth per CPU core is only hundreds
of MBs using standard algorithms [6], [42], the use of in-
storage hardware engines can free up dozens of CPU cores
for other tasks.
TCSSD has two special features compared to the traditional

SSD. First, TCSSD equips a more fine-grained address map-
ping table (compared with the typical page level) to locate
compressed chunks. Second, to reap space savings from com-
pression, TCSSD exposes an enlarged logical volume, the size
of which is pre-determined based on an estimated compression
ratio in the deployment environment. For example, a 16TB
logical volume is exposed if the physical flash capacity is 4TB
and the estimated compression ratio is 4.

C. Motivation

Based on the analysis in §II-B, enabling in-storage hardware
compression on ZNS SSDs is promising to constitute more
cost-efficient ZNS-based storage infrastructures. However, the
host-transparent methodology adopted in TCSSDs and the
state-of-the-art work Balloon-ZNS [93] is not practical for
ZNS. The key idea of Balloon-ZNS is to leverage the per-
zone compressibility locality (i.e., the relatively consistent data
compression ratio in each zone) for compressibility-adaptive
chunk indexing and storage management. Nevertheless, de-
spite the feasibility, the designs for both chunk indexing and
storage management suffer from significant trade-offs in cost
and/or performance (as introduced below), making the state-
of-the-art work far from efficient.

Broadly speaking, the host-transparent methodology in-
evitably delivers two intrinsic challenges for us to overcome.

Challenge #1: The fine-grained indexes to locate com-
pressed chunks conflict with the cost objective of ZNS and
further worsen the on-board DRAM shortage issue; the
compromised coarse-grained approach sacrifices both write
amplification and read performance.

In-storage compression alters both addresses and sizes of
the data chunks. Since these changes are invisible to the
host, the SSD necessitates fine-grained indexes internally to

locate compressed chunks. However, ZNS features limited on-
board DRAM, mainly for holding the coarse-grained zone-
level mapping table and the write buffer [30], [74]. Thus, the
fine-grained indexes reintroduce large on-board DRAM and
directly contradict one of the primary goals of ZNS (i.e., to
lower the device cost).

In addition, as introduced in §II-B4, the SSD logical vol-
ume should enlarge with the estimated compression ratio to
reap space savings. This significantly expands the logical-to-
physical mapping table, which not only increases the DRAM
cost but also challenges the high-capacity trend that ZNS
caters to. The density gap between DRAM and flash is
expected to increase further (e.g., over 1000× in 2030 [5]),
while the number of DIMMs inside an SSD is difficult to
scale [39], [72], [89].

To mitigate fine-grained indexing overhead, an intuitive
strategy is to use coarse-grained approaches. For example,
Balloon-ZNS [93], the state-of-the-art work, locates chunks in
a zone by proportionally scaling down their original addresses,
according to the profiled compression ratio in that zone.
Nevertheless, the majority of chunks can not be stored as
expected. More precisely, the chunk size after compression
is most likely different from the pre-allocated scaled-down
storage space. As shown in Figure 2a, to follow this coarse-
grained contract, smaller-than-expected chunks (i.e., B and
C) result in unnecessary storage space waste, which negates
the benefit from compression. At the same time, larger-than-
expected chunks (i.e., E) must be split with some at the tail
stored separately. The tail part can only be read after the main
part because its actual address is stored in the main part,
which leads to double reads and worsens the read latency.
Experiments on RocksDB show that our proposed approach
can further reduce the write volume by 12.6% and the average
read latency by 16.1% (see §V-C).

Challenge #2: The explicit zone boundaries of ZNS hinder
the host from harvesting space savings effectively; due to
the mismatching between zone and flash superblock, either
enlarging logical zone size or shrinking physical flash space
allocation is not practical.

According to §II-B4, TCSSD presents storage space savings
to the host in the form of a magnified logical volume. However,
when this strategy meets the explicit zone boundaries of ZNS,
harvesting space savings becomes much more difficult.

Compared to the TB-scale SSD capacity, each zone is
only tens of MBs to a few GBs [30], [74]. Thus, it is
hard to determine a uniformly enlarged zone size to the
host, given the distinct real-world data compressibility. As
shown in Figure 2b, a conservative estimation may incur
excessive space waste in superblocks, offsetting the advantage
from compression. On the other hand, though an aggressive
estimation may reap the space savings maximally, it would
cause frequent space overflow, necessitating host software to
handle exceptions (e.g., redirect writes into other zones).

Instead of enlarging the logical zone size as TCSSD does,
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another strategy is to shrink physical flash space allocation of
zones. Balloon-ZNS [93], for instance, groups several zones
into a single superblock and assigns each zone to a subset
of flash blocks in that superblock (see Figure 2b). Compared
to the conventional ZNS which adopts one-to-one mapping
between zones and superblocks, Balloon-ZNS restricts the
flash parallelism (e.g., dies) each zone can use, resulting in
limited per-zone bandwidth and lowering access performance.
Experiments on RocksDB show that the average write through-
put of Balloon-ZNS is only 60.5% of our proposed approach
(see §V-C).

Key Insight. To overcome the challenges due to host trans-
parency, potential solutions including the state-of-the-art work
sacrifice cost, write amplification, and/or access performance,
thereby failing to unleash the potential of in-storage hardware
compression.

In this paper, our key insight is that, given the coupled
logical and physical addresses within each zone, host software
can leverage existing fine-grained indexes to directly man-
age compressed data inside the SSD. By doing so, the two
aforementioned challenges can be well resolved. On the one
hand, our approach eliminates redundant SSD-internal indexes,
which preserves the DRAM-less or cost merit of ZNS and does
not face the on-board DRAM shortage problem even with high
flash capacity. On the other hand, our approach can harvest
space savings effectively and accurately because the logical
zones and the physical flash superblocks are always matched.

III. DESIGN OF CCZNS

A. Overview

We present CCZNS (CC: collaborative compression), an
advanced ZNS interface that revives in-storage hardware com-
pression through a novel host-SSD collaborative approach.
Specifically, CCZNS offloads only compression execution to
the ZNS SSD but responds the post-compression information
to host software for maintenance.

Figure 3 demonstrates the overview of CCZNS. Since
compression execution and indexing are now decoupled,
CCZNS introduces two specific read/write commands (i.e.,
compressed-write and decompressed-read, CW and DR in
short) to enable the cross-layer management. When CW and
DR are invoked from the host, hardware compression engines
can be activated by the SSD controller to (de)compress data on
the device-side I/O path. CW and DR leverage the metadata
field in the NVMe command to (1) provide extra information
to assist (de)compression and read/write processes and (2)
deliver the information for index management back to the host.

The general flow of writing/reading a chunk via CW/DR
is explained as follows. For CW, the chunk and its metadata
are first transferred to the SSD via DMA (i.e., ➊). The chunk
can then be compressed (i.e., ➋) and written to the zone after
compression (i.e., ➌). To report the index information, CCZNS
still utilizes the metadata field, overwrites it, and transfers it
back to the host (i.e., ➍). Host software can then extract the
above information and update the chunk index accordingly
(i.e., ➎). Once the index is successfully updated, the view of
the chunk is consistent in the perspectives of both host and
SSD (i.e., the post-compression state). When this chunk is read
later by DR, the host first attaches its index information in the
metadata field (i.e., ➀). Based on this information, CCZNS can
then locate the chunk in the zone, read it (i.e., ➁), and send it
to the compression engines (i.e., ➂). The chunk can be finally
transferred back to the host after decompression (i.e., ➃).

In the following, we introduce the detailed designs of
CCZNS. We first introduce the command formats; particu-
larly, for different file types and compression granularity, we
introduce single-chunk and multi-chunk modes of CW and
DR in §III-B and §III-C, respectively. In §III-D, we introduce
byte-addressable storage management, which accommodates
CC-specific commands, manages compressed chunks, and
harvests space savings from compression maximally. In §III-E,
we introduce how CW is compatible with traditional write
within the same zone in practice. In §III-F, we deliver several
meaningful discussions.

B. CC-specific Read/Write Commands

The design highlight of CW and DR is the integration of
CC semantics, such as compression offloading and information
responding, in traditional read/write commands without addi-
tional I/O operations. This is feasible by utilizing reserved bits
(up to two) in NVMe command dwords, as well as the NVMe
metadata field that is commonly used for hint transfer or data
protection [31]. The size of the metadata field can be flexibly
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supported by the SSD firmware according to the host software
requirements.

CW and DR are derived from traditional NVMe read/write
commands and identified by a reserved bit. As shown in
Figure 4, in addition to logical block address (i.e., LBA)
and the number of logical blocks (i.e., NLB) that exists in
traditional read/write commands, host software should also
provide some extra information to locate a chunk. The extra
information includes:
• intra-block offset, which jointly cooperates with LBA to

specify the byte-granular write location.
• post-compression size (for DR), which specifies the byte-

granular address range of the to-be-read chunk.
For CW, CCZNS only additionally requires intra-block

offset to check for I/O legitimacy (i.e., whether the write
location is aligned with the current byte-granular write pointer,
see §III-D). To facilitate host-side index maintenance, CCZNS
reports the post-compression chunk size to the host by over-
writing the metadata field and transferring the metadata back.
Currently, the NVMe driver of the Linux kernel only supports
NVMe metadata transfer in the same direction as I/Os (e.g.,
metadata can only be passed from the host to the SSD in
write I/Os). We modify the driver to support the bi-directional
NVMe metadata transfer with a few lines of code.

For DR, CCZNS requires not only intra-block offset but
also post-compression size because both of them are essential
for CCZNS to locate a chunk.

In either block-interface SSD or ZNS SSD, NLB is simply
set according to the original data size because neither the
I/O stack nor the SSD changes the data size. In contrast, for
CCZNS (both CW and DR), NLB should be set to at least the
pre-compression size. This setting ensures that the I/O stack
allocates enough memory space for the chunk to be transferred
between host and SSD.

C. Aggregating Multiple Chunks in a Single I/O

We call the commands introduced in §III-B as single-chunk
CW/DR because each read/write I/O only accommodates one

chunk. The single-chunk CW and DR are well-suited for large-
size files such as containers or objects. However, when the
chunk size is small, the single-chunk commands would lead
to a surged number of I/Os and thus considerably degrade
the performance. For example, the default chunk sizes of
three ZNS-compatible host software (i.e., RocksDB, F2FS, and
BtrFS) are 4KB, 16KB, and 4KB, respectively3, indicating the
importance of optimizing small-chunk scenarios.

We present multi-chunk CW and DR, which occupy one
more reserved bit compared to their single-chunk counterparts
(i.e., one for identifying CW/DR and the other for identifying
the single-/multi-chunk mode). The multi-chunk commands
can collaborate with common system optimization strategies
to improve performance in small-chunk scenarios.

Multi-chunk CW can coordinate with write buffer, which
flushes a batch of chunks together. As shown in Figure 4,
the metadata field of multi-chunk CW includes (1) intra-
block offset, (2) the number of chunks in the I/O (i.e., NCK),
and (3) pre-compression sizes of all chunks. NCK and pre-
compression sizes are essential for CCZNS to partition the
chunks and deliver them for compression separately. Once
chunks are compressed and written, CCZNS overwrites their
pre-compression sizes in the metadata field with the post-
compression ones, which are then passed to the host for index
maintenance.

Prefetching is a typical case for multi-chunk DR. As shown
in Figure 4, the metadata field of multi-chunk DR includes
(1) intra-block offset, (2) the number of logical blocks after
compression (i.e., CNLB), and (3) padding size (in the last
logical block) (i.e., PDSZ). They along with LBA together
specify the actual read address space for CCZNS. Multi-
chunk DR does not require the host software to provide post-
compression sizes of chunks but leaves CCZNS to locate them
by looking up the flash Out-Of-Band (OOB) area (see §III-D).
This avoids the traverse of chunk indexes to attach all the post-
compression sizes in the metadata field, which complicates
the command use and degrades software performance. After
chunks are read and decompressed, the number of chunks (i.e.,
NCK) and both pre-/post-compression sizes of chunks should
be transferred back to the host. This is to construct temporary
mappings of chunks from logical addresses to the addresses
in the buffer to accelerate future access, assuming that the
prefetched chunks are stored in the buffer.

Multi-chunk DR adopts a simple but effective prefix-chunk-
based prediction method from [47] to set NLB, which is
crucial for preserving enough memory space in the I/O stack
for the prefetched data. This method leverages the data com-
pressibility locality and uses the compression ratio of the first
chunk to forecast the overall compression ratio in the I/O.
Here, the compression ratio is calculated by dividing pre-
compression size and post-compression size. For example, if
the prefetching size (i.e., CNLB) is 1MB and the compression
ratio of the first chunk is 2, NLB is set to 2MB. After chunks

3In BtrFS, the compression process handles data in the granularity of
128KB. However, each 4KB is still compressed separately [7].



are read and decompressed, it is possible that the preset NLB
is not large enough to hold all the chunks in the read address
space. CCZNS prefetches the maximum number of chunks
within the NLB capacity and only transfers the number of
these chunks and their pre-/post-compression sizes back.

D. Byte-Addressable Storage Management
To accommodate CW/DR and manage compressed chunks,

CCZNS introduces byte-addressable storage management that
can harvest space savings from compression maximally. Over-
all, the byte-addressable storage management aims to expose
the SSD storage space and write pointers of zones in bytes
(rather than logical blocks).

For traditional write or CW, data or compressed data is
still written sequentially in a zone but the write pointer
advances the number of written bytes. The latest data less
than the minimum flash write granularity (e.g., a flash page)
is buffered with capacitor protected [35] and will be merged
with subsequent data. For traditional read or DR, CCZNS
first aligns the read address space in either logical-block-level
(i.e., traditional read) or byte-level (i.e., DR) to flash read
boundaries. After reading, both traditional read and DR extract
the necessary data but only DR involves decompression before
returning the data to the host.

In addition to responding to the host, CCZNS also keeps
lightweight metadata of chunks in the Out-Of-Band (OOB)
area of the flash pages. The metadata of each chunk includes
(1) the offset in the page, (2) the post-compression size, and
(3) the feedback size. Here, feedback size indicates the size
reported by the CW to the host, which may be different from
the post-compression one (the role is introduced below). When
the flash page is programmed, the metadata of new chunks
(i.e., the start addresses of chunks are within the page) is also
persisted in the corresponding OOB area.

Maintaining such metadata in OOB has several benefits.
First, CCZNS can utilize it to check the address legality of
DR (i.e. if the read address space preserves the integrity of
chunks), and illegal DR can be safely rejected. Second, the
metadata enables CCZNS to determine chunk boundaries and
decompress chunks independently, which promotes efficient
multi-chunk DR that can relieve the host-side overhead. Third,
the decoupling of actual post-compression size and feedback
size makes CCZNS more resilient. For example, the feedback
size can harmonize CW with traditional write in the same zone
(see §III-E) and opens up higher potential on optimizations,
such as restricting chunks across flash page boundaries [57].

The metadata of chunks incurs insignificant space overhead
in OOB. Modern SSDs usually have OOB with 128 to 256
bytes per 4KB flash [45], [58], [89]. Assuming an extreme case
that the chunk size is as small as 4KB and the compression
ratio is as high as 4 (higher than the common data compression
ratio), each 4KB flash accommodates 4 chunks and only
requires (2 + 4 + 4) ∗ 4 = 40B.

E. Harmonize CW with Traditional Writes
CW and DR should be compatible with traditional

read/write commands not only at the command level but also

applicable in practice. For example, different parts of files can
have different semantics and need to be partially compressed.
However, mixing CW and traditional writes in the same zone
is not practical due to the inconsistent granularity of the write
pointer. Simply separating CW and traditional writes into
different zones is not desirable due to file fragmentation and
limited open zones (e.g., 14 in Western Digital ZN540 [30]).

To harmonize CW with traditional writes in the same zone,
we propose a new zone abstraction, namely padding zone,
which differs from a conventional zone by automatically
aligning the last chunk after compression to the logical block
boundary. The zone type (i.e., padding or conventional) is
specified via a reserved bit in the explicit zone open command.
As introduced in §III-D, with the decoupled feedback and
post-compression sizes, CCZNS can report the size after
padding to the host but still relying on the actual post-
compression size in the OOB to locate the chunk.

The extra space overhead is negligible in both single- and
multi-chunk CW, as the I/O size should be large in both
modes (i.e., the former has one large chunk while the latter
has multiple small chunks). Assuming the post-compression
chunk(s) in an I/O are 256KB (i.e., 1MB raw data with a
compression ratio of 4), the average space amplification due to
padding is only 0.8% (i.e., 4/2 = 2KB compared to 256KB).

F. Discussions

Incompressible data handling. It is advisable for host soft-
ware to determine whether to use CW/DR or traditional
read/write commands considering its data patterns, and this
strategy is consistent with the software definability nature
of ZNS. Specifically, for incompressible data, host software
can directly use traditional read/write commands to avoid
unnecessary computational and energy overhead.

Meanwhile, the FTL can also skip unrewarded compression
by efficiently predicting compression ratio via compressing
sampled data [47] or estimating based on data entropy [34]. If
the predicted compression ratio is too poor, the FTL directly
writes data without compression.
Zone Append support. Zone Append is a new write method
of ZNS, which breaks the QD=1 limitation4 and allows
multiple concurrent writes dispatched to the same zone [3].
The actual write address of Zone Append is determined by
the ZNS SSD based on their arrival order and reported to the
host. Once I/O is completed, the host can then perceive the
actual write address and update the index accordingly.

The current (write-based) CW can be easily ported to the
Append-based CW. Their only difference is that, for Append-
based CW, CCZNS should also return the actual write address
but in byte granularity (rather than the logical block). Cur-
rently, there is no existing ZNS-compatible host software that

4Due to the sequential write constraint of ZNS, Linux kernel employs the
mq-deadline scheduler to restrict only one write in a zone can be processed
at one time [22].
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supports Zone Append in the compressed I/O path5. We leave
the evaluation of Zone Append-based CW as future work.
Implications on Flexible Data Placement (FDP) [84]. FDP
is a recent NVMe proposal aiming to eliminate device-side
write amplification, which is also one of the goals of ZNS.
Through FDP, host software can issue writes with hints to
guide data placement, and the SSD controller can store data
with different hints into different flash superblocks. Compared
to ZNS, FDP does not save on-board DRAM and could not
achieve utmost benefits in write amplification and flash over-
provisioned space. However, FDP retains backward compati-
bility of the block interface, which avoids significant host-level
adaptations (that ZNS requires) and is thus easy to deploy.

Since FDP still preserves a fine-grained mapping table
inside the SSD, the logical and physical addresses are not
coupled. This prevents host software from performing consis-
tent and efficient cross-layer management like using CCZNS.
However, it is promising for FDP to leverage the concept
of host-SSD collaboration to effectively suppress the propor-
tional increase of on-board DRAM with the compression ratio
(see §II-B4), which is crucial for reducing hardware cost. We
leave this vision as future work.

IV. UNLEASHING THE POTENTIAL OF CCZNS

A. Overview

Given the fine-grained data indexes inherent in the host soft-
ware, CCZNS can be widely adapted to offload burdensome
(de)compression tasks and improve system performance, such
as key-value stores, filesystems, SSD cache, and all-flash array.
Moreover, the adaptation can be implemented in one layer,
and upper-layer software can benefit from CCZNS without
any code modification.

Overall, there are two essential principles for generalizing
CCZNS into ZNS-compatible host software. The first is the
requirement of fine-grained host-side chunk indexes. Fortu-
nately, these are essential in host software (e.g., RocksDB,
F2FS) due to the need to manage compressed chunks in byte
granularity. The second is that indexes should be persisted
later than chunks or data (the same as what Zone Append [3]

5BtrFS has announced the experimental use of Zone Append. However,
this only applies to the non-compressed data path and not to the metadata
and compressed data paths [25].

requires). This principle is non-intrusive and in fact crucial for
data correctness during recovery. For example, if the system
crashes when indexes are persisted but the data is not, the
indexes will point to the wrong data.

In the following, we introduce how CCZNS can benefit
host software through a case study on RocksDB [13], the
mainstream application of ZNS, and its filesystem backend
ZenFS [21]. The engineering efforts are moderate, with about
800 LoC in RocksDB and 300 LoC in ZenFS.

B. Case Study on RocksDB and ZenFS

Background. RocksDB [13] is a popular persistent key-value
store developed by Facebook and optimized for SSDs. Many
large-scale storage services, websites, or software employ
RocksDB as the underlying storage engine due to its high
performance on key-value services. ZenFS [21] is a filesystem
plugin of RocksDB that provides end-to-end compatibility
for ZNS (see Figure 5a). ZenFS uses RocksDB’s filesystem
interfaces to store data files into zones based on their lifetime.

RocksDB adopts the log-structured merge (LSM) tree to
organize data files (see Figure 5b), with newer ones stored
in higher levels (e.g., L0) and older ones squeezing into lower
levels (e.g., Ln). For every column family or logical partition
in RocksDB, new key-value pairs via put operations are
first batched in an in-memory memtable. Upon reaching a
preset size limit, the memtable is marked as immutable and
persisted in storage as a sorted string table (SST) via the flush
process. Compaction is triggered when a level exceeds its size
limit, in which a victim SST is selected and merged with
key-overlapping SSTs in the next lower level. Compaction
enhances storage space efficiency as deleted data can be
eliminated and levels of SSTs become more compact.

RocksDB employs the block-based SST table format by
default, which includes data blocks, meta blocks, metaindex
blocks, and a footer. During SST construction, key-value pairs
in the SST are sorted and divided into data blocks (4KB by
default). Data blocks are compressed individually and stored
compactly from the start of the file. Right after data blocks,
there are a few meta blocks. Among them, index blocks hold
the index entries of data blocks for key-value pair lookups.
Each index entry contains the maximum key in the correspond-
ing data block, the logical byte offset in the SST, and the post-
compression data block size. After compressing the respective
data block, an index entry is immediately constructed and
added to the index blocks.
Utilizing CC-specific read/write commands. ZenFS cur-
rently uses the pread/pwrite interfaces. For CCZNS, data
blocks are operated by CC-specific read/write commands (i.e.,
CW and DR) to offload the burdensome (de)compression
tasks. For other parts in the SST (e.g., index blocks) and
other files except for SSTs (e.g., filesystem metadata), CCZNS
still employs the traditional read/write commands. The zones
storing SSTs are opened in the padding mode to harmonize
different write methods (i.e., CW and traditional write).
Extending index entries for decompression. As introduced
in §III-B, host software should maintain both post- and pre-
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compression sizes. The former is used to locate chunks, and
the latter is used to preserve enough space for data retrieval.
Therefore, the index entry format is added with an additional
field that stores the pre-compression size (i.e., R in Figure 6).
This inevitably expands the index blocks, but the overall
memory usage increment is acceptable (see §V-C).
Constructing index blocks after persisting data blocks.
Since CCZNS can only report the post-compression sizes of
data blocks after the completion of CW (similar to Zone
Append [3]), we postpone the construction of index entries
until all data blocks are persisted. Once constructed, the index
blocks are still persisted right after the data blocks.
Leveraging multi-chunk-per-I/O optimizations. Adopting
multi-chunk CW and DR is crucial for RocksDB to leverage
its write buffer and prefetching strategies, greatly reducing
the number of I/Os and leading to better performance. When
persisting an SST (e.g., in flush or compaction), each flush
of the write buffer (1MB by default) corresponds to a multi-
chunk CW. Similarly, each prefetching on an SST is viewed as
a multi-chunk DR. Prefetching happens either in compaction
or iterator operations (i.e., scan).
Crash consistency is not affected. CCZNS does not affect
the crash consistency of RocksDB. This is not only because
CCZNS follows the principle that the indexes are still persisted
later than chunks, which is crucial for data recovery. Also,
all our adaptation logic above only applies to the internal
processes of SST construction, which is atomic in RocksDB.
If the system crashes during SST construction, RocksDB will
rebuild this SST again after recovery.

V. EVALUATION

A. Experimental Setups

Environment. All experiments are conducted in a virtual
machine with 32GB memory, 16 cores, and a Linux kernel
(version 5.10.9). The virtual machine is running on a phys-
ical server equipped with four 24-core/48-thread Intel Xeon
Platinum 8260 2.40 GHz CPU sockets.
SSD configurations. Both CCZNS and ZNS SSDs are imple-
mented on a popular SSD emulator FEMU [67], which runs
in the virtual machine and thus supports full-stack system
research. The flash page size and block size are 16KB and
32MB, respectively. The SSD has 64 parallel flash dies, and
each zone consists of 32 blocks across half of the dies (the
zone-to-flash mapping is similar to that of Western Digital
ZN540 [4]). The zone size is thus 1GB, and the total SSD

capacity is configured as 128GB. The TLC flash read, write,
and erase latency are set to 90µs, 700µs, and 5ms, respec-
tively [76]. CCZNS supports each 4KB logical block with
64B metadata, which is enough for information transfer.
FEMU extension for emulating hardware compression.
CCZNS emulates hardware compression by adding extra la-
tency delay on the critical read/write paths, referring to the
statistics of real ASIC-based compression engines. Meanwhile,
we use multiple CPU cores to perform compression in parallel,
ensuring that data compression can be finished before the
emulated I/O delay.

Since the vanilla FEMU dedicates multiple threads (e.g.,
8) to process I/Os alternatively (i.e., each thread picks one
from NVMe SQ, processes the I/O, and sends it back to the
corresponding NVMe CQ), performing CPU compression on
the critical I/O path can severely block the I/O. To resolve
this issue, we delegate I/O processing and (de)compression
into different groups of threads. Specifically, I/Os from an
NVMe SQ are handed to different I/O processing threads (8
by default shared between NVMe SQs) for parallel execution.
Each I/O processing thread then distributes chunks to com-
pression threads (16 is enough in our evaluation) and collects
them before returning to the NVMe CQ. Each thread runs
exclusively on a server CPU core and thus the total number
of cores reserved for FEMU is 8+8+16 = 32. Note that the
server CPU overhead here is only for high-quality emulation
and does not exist in real products.
Evaluated schemes.
• NO+ZNS (abbr. NO or N) directly writes data to the ZNS

SSD without compression.
• Snappy+ZNS (abbr. Snappy or S) writes data after

compression by CPU cores using the Snappy algorithm.
• QAT(deflate)+ZNS (abbr. QAT or Q) uses the official

QAT plugin for RocksDB [10] to offload compression to
the external Intel®QuickAssist Adapter 8970 [18], which
employs the deflate/Gzip algorithm6.

• ZSTD+ZNS (abbr. ZSTD or Z) writes data after compres-
sion by CPU cores using the ZSTD algorithm (level 1 with
the fastest speed); compared to Snappy, ZSTD achieves a
higher compression ratio at the expense of performance.

• ZSTDPC+ZNS (abbr. ZSTDPC or ZP) is similar to ZSTD
but employs 6 threads for parallel compression; we do not
observe further performance gains with a larger number of
compressed threads.

• Balloon-ZNS(ZSTD) (abbr. Balloon or B) is the state-of-
the-art work that revives in-storage hardware compression in
a host-transparent way [93]; it performs ZSTD compression
(level 1) and more design details are introduced in §II-C.

• CCZNS(ZSTD) (abbr. CC) is our proposed scheme that
revives in-storage hardware compression through host-SSD
collaboration and performs ZSTD compression (level 1).

6Note that due to different hardware, QAT should not be compared to CC
head-to-head. Even so, QAT is representative of the external/on-chip hardware
compression architecture where the small-chunk (de)compression performance
is unsatisfactory due to data round-trip movements.



TABLE III
PERCENTILE DISTRIBUTION OF VALUE SIZES (IN BYTES) IN TWO REAL

DATASETS. A: AMAZON. R: REDDIT.

Avg. 10p 25p 50p 75p 90p 99p
A 1173.7 345 465 779 1436 2499 5672
R 947.2 620 676 786 1005 1421 3208
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Fig. 7. Throughput in FIO micro-benchmarks with different I/O sizes.
CR: compression ratio of the data.

B. Raw SSD Access Performance

We first evaluate the raw SSD access performance of
CCZNS and ZNS (corresponding to CC and NO). The objective
is two-fold: (1) investigating the access performance charac-
teristics compared to the conventional ZNS and (2) evaluating
the performance of single-chunk CW/DR commands. We use
FIO [9], a popular benchmark tool for testing, and modify it to
adapt CCZNS. Considering that real-world data compression
ratios are typically less than 4, we use synthetic data with
compression ratios of 2 and 4 for evaluation. Figure 7 shows
the throughput in three micro-benchmarks (i.e., sequential
write, sequential read, and random read). Each benchmark has
different I/O size configurations suitable for their patterns and
employs 4 threads writing different ranges of zones concur-
rently. Each thread dispatches I/O requests constantly and thus
the access load is high. We omit NO+ZNS(CR=4) because
the compression ratio (i.e., CR) does not matter when data is
not compressed, and the performance of NO+ZNS(CR=4) is
similar to NO+ZNS(CR=2).

In the sequential write workload, CC outperforms NO by
37.6%∼99.9% when CR is 2 and 49.1%∼2.1× when CR is 4.
Moreover, CC can exceed the theoretical SSD write bandwidth
to up to 2.0× and 3.1× when CR is 2 and 4, respectively. Due
to high-performance hardware compression engines, the same
flash parallel structure in the SSD can program a larger amount
of data simultaneously, which increases the user-perceived
write throughput.

In the sequential read workload, CC can also surpass NO and
the theoretical SSD read bandwidth, though the gain is smaller
and only shown when the I/O size is large, due to the smaller
bandwidth gap between hardware compression and flash read.
The performance improvement compared to NO is up to 20.4%
and 42.0% when CR is 2 and 4, respectively.

In the random read workload, CC shows similar or slightly
higher (less than 5%) throughput compared to NO. We also
evaluate the average and 99.99p latency in the random read
workload. The results of CC and NO are comparable, except
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Fig. 8. Write volume in YCSB Load using different datasets. The full
names of schemes (i.e., x-axis labels) are shown in §V-A.

that when the I/O size is 128KB, CC can reduce the average
latency by 38.8% and 36.0%, and the 99.99p latency by 55.9%
and 60.2% when CR is 2 and 4, respectively. The reason
behind this is that CC can read fewer flash pages during each
read, thus reducing flash die contention and improving the
latency.

Since both CW and DR require additional information
transfer through the NVMe metadata field (i.e., 64B per 4KB
data), we also analyze the DMA time for metadata transfer in
both commands. Across different benchmark configurations,
the DMA time for metadata transfer accounts for less than
1% of the total processing time in the SSD, indicating that
the metadata transfer has a trivial impact on the I/O latency.

C. RocksDB Performance

We further conduct a system-level evaluation on RocksDB
(version 8.11.0) using YCSB benchmarks [38]. In RocksDB,
the block size is 4KB (the default), and the block cache is
configured to a moderate 4GB that can only hold a fraction of
data. We employ direct I/O to bypass the kernel page cache.
Since data patterns can significantly affect the (de)compression
performance, we employ three datasets with distinct compres-
sion ratios. They are two real datasets from Amazon [73] and
Reddit [1] (the value size distribution is shown in Table III)
as well as one synthetic dataset (random data with 1KB key-
value pairs). Among them, Amazon and Reddit datasets try
to cover the typical range of real-world compressibility [55],
while the random dataset represents a case that is relatively
unfavorable for CCZNS. We use all workloads in YCSB for
evaluation. In YCSB Load, we insert 20M key-value pairs into
the database. In other workloads, we perform 5M operations
after completing YCSB Load.
Write Volume. Figure 8 shows the write volume in YCSB
Load using different datasets, and a lower write volume con-
tributes to a lower cost. We can see that CC reduces the write
volume by an average of 44.5%, 25.2%, and 12.6%, compared
to NO, Snappy, and Balloon. Host-side compression using
standard algorithms, namely QAT, ZSTD, and ZSTDPC, further
reduce the write volume by 6.5%, 8.8%, and 8.6%. Despite
that CC has the same compression algorithm and level as
ZSTD and ZSTDPC, CC necessities data padding at the end
of multi-chunk CWs for compatibility with traditional writes
in the same zone (see §III-E). Nonetheless, considering the



NO+ZNS
ZSTD+ZNS
CCZNS(ZSTD)

Snappy+ZNS
ZSTDPC+ZNS

QAT(deflate)+ZNS
Balloon-ZNS(ZSTD)

Load0

20

40

60

Th
ro

ug
hp

ut
 (K

OP
S/

Se
c)

A B C D E F A-Uni B-Uni0

10

20

30

(a) Amazon (CR-Z≈2.0, CR-S≈1.4)

Load0

20

40

60

Th
ro

ug
hp

ut
 (K

OP
S/

Se
c)

A B C D E F A-Uni B-Uni0

10

20

30

(b) Reddit (CR-Z≈3.0, CR-S≈2.2)

Load0

20

40

60

Th
ro

ug
hp

ut
 (K

OP
S/

Se
c)

A B C D E F A-Uni B-Uni0

10

20

30

(c) random (CR-Z≈1.3, CR-S≈1, relatively incompressible)

Fig. 9. Throughput in YCSB workloads using different datasets. CR-
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significant throughput benefits (as shown below), the minor
extra write amplification of CC is deemed acceptable.
Throughput. Figure 9 shows the throughput in all YCSB
workloads using different datasets. We also supplement YCSB
A and B with the uniform access pattern (in addition to the
default Zipfian). We first evaluate the load throughput. Across
all datasets, CC achieves the best throughput, increasing by
3.6%, 43.7%, 3.58×, 3.21×, 75.1%, and 65.3%, compared to
NO, Snappy, QAT, ZSTD, ZSTDPC, and Balloon, respec-
tively. The performance gain is substantial compared to ZSTD
and ZSTDPC (which has the best write volume reduction)
due to efficient (de)compression loading during SST flush and
compaction. Balloon has sub-optimal write performance due
to limited flash parallelism each zone can use.

In other read-intensive YCSB workloads except Load, CC
also demonstrates the best throughput, increasing by 10.2%,
11.7%, 32.0%, 24.1%, 20.2%, and 10.4% compared to other
schemes. The performance gain of CC is mainly from (1)
efficient (de)compression offloading and/or (2) high space sav-
ings using standard algorithms (e.g., ZSTD), resulting in fewer
data stored in the LSM tree and thus higher lookup efficiency.
Balloon not only restricts zone-to-flash parallelism but also
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TABLE IV
AVERAGE AND MAXIMUM CPU USAGE IN YCSB LOAD. THE DATASET

IS AMAZON, WHILE OTHERS SHOW A SIMILAR TREND.

N S Q Z ZP B CC
Avg. (%) 5.0 7.2 7.8 8.0 21.6 5.2 5.8
Max. (%) 12.0 17.1 19.4 17.9 50.0 11.8 12.3

TABLE V
AVERAGE SYSTEM MEMORY USAGE (IN GB) IN YCSB LOAD AND
YCSB C (READ-ONLY). THE DATASET IS AMAZON, WHILE OTHERS

SHOW A SIMILAR TREND.

N S Q Z ZP B CC
Load 2.77 2.88 2.63 2.63 3.15 2.65 3.24

C 6.51 6.68 6.55 6.56 7.05 6.60 7.25

generates two flash accesses for a proportion of read requests,
resulting in sub-optimal read performance.
Latency. Figure 10 shows the average and tail latency in
YCSB Load and C (read-only), respectively. For clear demon-
stration, the ticks on the y-axis are unequally spaced. In
YCSB Load, CC achieves the best-level latency over other
compression-enabled schemes, on par with NO. For example,
compared to ZSTDPC, CC decreases the average, 99.9p, and
99.99p latency by 49.5%, 49.5%, and 56.8%, respectively.
Compared to Balloon, the corresponding values are 50.0%,
47.9%, and 53.7%. In contrast, in YCSB C, the latency
improvement in CC is smaller than YCSB Load because the
overhead of decompression is less than that of compression.
Host CPU and Memory Usage. Table IV shows the average
and maximum CPU usage in YCSB Load. Thanks to the
offloaded (de)compression, CC achieves the best-level CPU
usage, on par with NO and Balloon. Notably, compared to
ZSTDPC, the average and maximum CPU usage is reduced
by 73.1% and 75.4%, respectively.

Table V shows the average system memory usage in YCSB
Load and C (read-only). While eliminating redundant indexes
inside the SSD, CC requires more host memory due to the
expanded index blocks. The index blocks are necessary to be
maintained during both flush/compaction and key-value pair
lookups, leading to a memory usage increase in both work-
loads. Despite this, the memory usage increment is acceptable.
For example, compared to ZSTDPC, it is only 2.9% and 2.8%
in YCSB Load and C, respectively.
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Fig. 11. Throughput with different data block sizes in YCSB Load and
YCSB C. The dataset is Amazon, while others show a similar trend.

Summary of Results. CCZNS not only maximizes the ben-
efits of compression in write volume and cost (with only
minor loss), but also achieves high system performance in
throughput, latency, and host CPU usage, while no other
scheme can offer all these merits.

The side effect of CCZNS is the increase in host memory
usage due to expanded index blocks. However, we believe
consuming slightly more host memory is preferable to rein-
troducing high SSD memory (see §II-C) for two reasons. First,
since only one field is added to the index entry, the memory
usage increment is small. Second, the fast development of
memory disaggregation and CXL provides ever-higher mem-
ory scalability for cloud and datacenter servers [43], [44], [66].

D. Extended Study on RocksDB

In this section, we analyze (1) the individual effects of
multi-chunk commands (rather than single-chunk), (2) the
performance sensitivity with different block sizes in RocksDB,
(3) the extra write volumes under different write loads, and (4)
the performance with extremely incompressible data.
Effects of multi-chunk CW/DR. The multi-chunk mode is
proposed to enhance the scenarios where the chunks are small.
Otherwise, each I/O can only accommodate one chunk, which
increases the number of I/Os and thus leads to degraded
system performance. To investigate the individual effects of
multi-chunk commands, we separately replace the multi-chunk
CW/DR with their single-chunk counterparts and evaluate the
performance of CC.

When using multi-chunk CW and single-chunk DR, the
throughput CC drops to only 55.2% due to the inefficient
prefetching during SST flush and compaction stages. When
using single-chunk CW and multi-chunk DR, CC fails to
allocate storage space to accommodate 20M key-value pairs.
In this case, every data block (the original size is around 4KB)
after compression is padded to the logical block boundary,
resulting in high space amplification.
Performance with varied block sizes. The size of the
data block (i.e., block size) can affect the (de)compression
performance. Thus, we vary the block size to investigate
the performance sensitivity of CC by comparing it to the
schemes using host CPU compression and external hardware
compression. Figure 11 shows the throughput results in YCSB
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Fig. 12. Write volumes and ratios of extra write volume (i.e., CC to ZSTD)
in YCSB Load under different write loads using different datasets. The
grey lines with markers indicate the ratios of extra write volumes.

Load and C (read-only). In YCSB Load, CC substantially
outperforms other schemes in all configurations, and the
average throughput improvements are 3.6×, 3.8×, and 1.6×,
respectively, compared to QAT, ZSTD, ZSTDPC. In YCSB C,
the performance gain is smaller but still reaches 26.2%, 44.7%,
and 29.6%, respectively.

We can also notice that the throughput of QAT can exceed
that of ZSTD and ZSTDPC when the block size reaches 8KB
in YCSB C. This is mainly because a larger block size can
amortize the data round-trip overhead between host and the
PCIe-attached QAT accelerator.
Extra write volumes under different write loads. As shown
in Figure 8, despite with the same compression algorithm and
level, CC incurs slightly more extra write volumes compared
to the host-side counterparts (e.g., ZSTD) that achieve the best.
To provide more insights on the extra write volume, we vary
the number of loaded key-value pairs in 10M, 20M, and 30M,
and compare the write volume of CC against ZSTD.

Figure 12 demonstrates the results. We can see that the
ratio of extra write volume (i.e., CC to ZSTD) decreases as
the loaded data volume increases. The main reason is that, as
the loaded data volume rises, the inherent write amplification
of the LSM structure increases significantly [82], making the
impact of the extra write volume from CC on the overall write
volume less. Specifically, when loading 30M key-value pairs,
the ratios of extra write volume in three datasets are only 4.0%,
5.9%, and 2.8%, respectively.
Performance with extremely incompressible data. As dis-
cussed in §III-F, when the stored data is extremely incompress-
ible, host software can simply switch to traditional read/write
commands (rather than the proposed CW/DR) to avoid unnec-
essary performance overhead.

We experimentally confirm the performance efficiency of
this approach under all evaluated workloads in Figure 9. Par-
ticularly, CC can achieve similar write volume and throughput
compared to the case where compression is disabled (i.e., NO).

VI. RELATED WORK

ZNS interface or ZNS SSD design. Prior works have exam-
ined a few limitations of the ZNS interface, including high GC
overhead [46], [94], write performance deficiency [3], [24],
[92], flash bandwidth underutilization [27], [50], [74], host-
managed heterogeneous zone (e.g., SLC/QLC) support [91],



and in-storage compression support [93]. With the same goal
of Balloon-ZNS [93], CCZNS also aims to revive in-storage
hardware compression but with a host-SSD collaborative ap-
proach, which fundamentally resolves the intrinsic challenges
that the host-transparent methodology confronts.

While ZNS redraws the function responsibilities of host
and SSD, the community is continuously rethinking better
divisions. For example, to avoid unnecessary data transfer
between host and SSD, host-side data migrations are advocated
to be offloaded to the SSD via new commands [46], [53],
[86]. Similarly, CCZNS unleashes the potential of in-storage
hardware compression on ZNS SSDs by rationally shifting the
indexing duty (originally on SSDs) back to the host.
In-storage computing. Prior works have widely explored
in-storage computing by offloading filesystems [61], [83],
[99], key-value stores [54], [58], [63], user-space cache [78],
software RAID [95], and also compute-intensive tasks such
as approximate nearest neighbor search (ANNS) [90] and
compression [14], [16]. Our focus in this paper is compression
offloading, which has gained industry support for integration
into commercial SSD products.

FusionFS [99] proposes a general I/O abstraction (i.e.,
CISCOps) that combines multiple I/O and data processing
operations for offloading. In contrast, CW and DR are specif-
ically designed for compression offloading on ZNS SSDs,
integrating compression semantics into existing traditional
read/write commands and carefully designed to meet real-
world compression requirements. CW and DR also incorporate
a novel information-responding feature to facilitate host-level
index management.
In-storage (hardware) compression. Built-in compression
can improve the performance and lifetime of SSDs and has
been extensively studied over the past decade [34], [56], [60],
[65], [68], [77], [97], [101], [104]. This compression archi-
tecture becomes more promising when the powerful FPGA-
or ASIC-based hardware engines are integrated inside the
SSD (i.e., in-storage hardware compression), rather than by
embedded ARM cores that have lower computational power.

Numerous efforts have been made to advance in-storage
hardware compression. Many works focus on innovating host
software to better leverage in-storage hardware compression,
including rational database [32], [80], B+ tree [51], [81],
hash-based key-value store [36], and log-structured filesys-
tem [87]. From the hardware side, Lee et al. [65] and Park
et al. [77] present FPGA-based hardware implementations
as well as compression-aware FTL designs. Huang et al.
introduce the designs of ASIC-based hardware compression
engines [52]. Balloon-ZNS proposes compressibility-adaptive
and slot-aligned storage management to enable in-storage
hardware compression on ZNS SSDs host-transparently [93].

Existing works are all based on the SSD with the con-
ventional host-transparent architecture. In contrast, we for
the first time revisit the system architecture with in-storage
hardware compression on the emerging ZNS SSD and propose
to decouple compression indexing with execution for better
cost and performance.

VII. CONCLUSION

This paper presents a new compression system architecture
to revive in-storage hardware compression on ZNS SSDs, and
the core idea is to leverage the existing fine-grained indexes at
the host to directly manage compressed data inside the SSD.
To this end, we propose CCZNS, an advanced ZNS inter-
face, with novel designs on read/write commands and storage
management, to revive in-storage hardware compression in a
host-SSD collaborative manner. Comprehensive experiments
on RocksDB and ZenFS demonstrate that the CCZNS-based
storage system greatly outperforms existing system solutions.
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