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Cloud databases revolutionize data processing and storage by providing on-demand and scalable services
housed on the cloud infrastructure. Multi-tenancy and serverless are two key tenets transforming the cloud
database architecture, offering significant cost savings and simplified user management. However, we found
that cloud databases using LSM-tree-based key-value stores as the storage engine face a crucial conundrum
when adopting this promising multi-tenant serverless architecture. Specifically, LSM-tree-based key-value
store encounters a critical dilemma between maintaining performance service-level agreements (SLAs) for
tenants and over-subscribing storage bandwidth for high cost-efficiency.

In this paper, we present FlexEngine', a novel LSM-tree-based key-value store, which for the first time
enables the practical and efficient adoption of LSM tree in multi-tenant serverless cloud databases. FlexEngine
introduces a series of designs to navigate the above dilemma, including a two-level (i.e., partition- and node-
level) I/O admission control framework and a two-stage compaction deferral mechanism. We implement
FlexEngine on a commercially-deployed RocksDB and perform comprehensive experiments on both production
traces and micro-level workloads. The experimental results demonstrate that FlexEngine can significantly
improve the capability to over-subscribe storage bandwidth, which leads to high cost-efficiency, while still
promising consistent performance SLAs for users.
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FlexEngine has already been integrated in Tair Serverless KV [8], a key-value cloud database from Alibaba Cloud.
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1 Introduction

The market for cloud databases has expanded rapidly in recent years with the launch of services
by numerous public cloud providers, including Amazon AWS, Microsoft Azure, Google Cloud,
Alibaba Cloud, IBM Cloud, Oracle Cloud, and so on. Unlike traditional on-premises databases,
cloud databases offer excellent advantages to users by eliminating substantial upfront capital
expenditures on hardware infrastructure while minimizing operational overhead. In addition, built-
in high availability, disaster recovery, and seamless global deployment capabilities benefit users
without requiring specialized in-house expertise.

Multi-tenancy and serverless are two key tenets recently driving the re-architecture of cloud
databases. Multi-tenancy consolidates multiple tenants sharing the same set of physical resources
while maintaining their logical isolation [18, 19, 23, 33, 41, 50, 64]. This aggregated architecture
further enables cloud database providers to over-subscribe resources, since most real-world tenants
have sporadic and low average resource usage [19, 22, 50]. As a result, multi-tenancy can signifi-
cantly enhance resource utilization and lower the costs for both users and providers. On this basis,
serverless further simplifies user-level infrastructure management by automatically provisioning,
scaling, and optimizing resources on demand, allowing them to focus solely on data operations
while only paying for the actual usage [19, 22, 23, 33, 40, 42, 50, 53, 72].

Figure 1 demonstrates the typical architecture of multi-tenant serverless cloud databases, where
multiple tenant partitions operate simultaneously in a virtual machine within a node and share
the resources in it (see Section 2.1). However, as we move toward the multi-tenant serverless
architecture, we found that cloud databases using LSM-tree-based key-value store as the storage
engine face a severe dilemma, i.e., failing to reconcile performance service-level agreements (SLAs) for
tenants with storage bandwidth over-subscription, which is crucial for cost-efficiency. More specifically,
existing LSM tree designs fall short of supporting performance SLAs and storage bandwidth
over-subscription simultaneously, let alone pursuing a high degree of storage bandwidth over-
subscription for high cost-efficiency.

This dilemma fundamentally stems from the asynchronous way in which LSM tree handles
background activities (see Section 2.3). It periodically invokes bandwidth-hungry compaction
processes to reclaim invalid data and accelerate read access. As a result, even a few tenants
with low user write loads can easily lift the total storage bandwidth usage very high, e.g., when
multiple tenants invoke compactions simultaneously. This frequently exhausts the available storage
bandwidth, surges user-perceived operation latency, and even causes service unavailability from
time to time.

Such a dilemma delivers us two challenges to overcome. The first is to embrace both performance
SLAs and storage bandwidth over-subscription, feasibly. A straightforward approach to this is to
configure each tenant partition with a maximum available bandwidth, which should be sufficient to
guarantee performance SLAs while also stabilizing the total usage of the system bandwidth not
too high [33]. For better resource utilization, this maximum available bandwidth should also be
tuned dynamically, e.g., reduced if the actual user loads are low, so that more tenant partitions
can be co-located in a node (i.e., achieving over-subscription in fact). However, our study reveals
that auto-tuned rate limiter [1], the state-of-the-art bandwidth limiting mechanism in RocksDB,
can severely break performance SLAs, since it can not respond timely to sudden user load growth,
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which is prevalent for real-world tenants (see Section 3.1). Therefore, auto-tuned rate limiter can
not practically achieve storage bandwidth over-subscription, otherwise performance SLAs are
damaged.

The second challenge is to achieve a high degree of storage bandwidth over-subscription, which
significantly improves cost-efficiency. The key challenge behind high storage bandwidth over-
subscription is maintaining performance SLAs during storage bandwidth shortages. Even if the
maximum available bandwidth of a partition can be limited, when multiple partitions exhaust
their bandwidth (e.g., invoke bandwidth-hungry compactions) simultaneously, storage bandwidth
shortages inevitably arise. To make matters worse, as the over-subscription ratio of the storage
bandwidth increases, the shortfalls of storage bandwidth also rise, thereby placing higher demands
on LSM-tree-based key-value stores to sustain performance SLAs. Nonetheless, we found that exist-
ing LSM tree designs fail to address this issue satisfactorily, i.e., sustain performance SLAs during
storage bandwidth shortages, especially with a high degree of storage bandwidth over-subscription
(see Section 3.2). Specifically, they are either inapplicable in the context of cloud databases (e.g.,
CruiseDB [44] and ADOC [70]) or not effective enough (e.g., Calcspar [73] and SILK [21]). Thus,
existing approaches fail to allow providers to configure a high over-subscription ratio in practice.

In this paper, we present FlexEngine, a novel LSM-tree-based key-value store. FlexEngine is
uniquely positioned in addressing the above two challenges, and for the first time makes LSM
tree practically and efficiently adopted in multi-tenant serverless cloud databases. FlexEngine
incorporates a two-level (i.e., partition- and node-level) I/O admission control framework and a
two-stage compaction deferral mechanism. To address the first challenge, FlexEngine innovatively
designs the partition-level I/O admission control as a foreground/background separating bandwidth
management architecture. Foreground tasks, such as user reads and WAL writes, have fixed-
reserved bandwidth to ensure timely processing, while background activities, including flushes
and compactions, have dynamically-tuned bandwidth to maximize the overall cost-efficiency. To
address the second challenge, FlexEngine introduces node-level I/O admission control to holistically
schedule I/Os in a node to secure better latency. In addition, a two-stage compaction deferral
mechanism is proposed to prevent write stalls in LSM tree, even with highly over-subscribed
storage bandwidth.

We summarize our contributions in this paper as follows:

o To the best of our knowledge, we for the first time investigate building LSM-tree-based multi-
tenant serverless cloud databases. In particular, we uncover a critical dilemma between per-
formance SLAs and cost-efficiency (from storage bandwidth over-subscription) in this new
architecture.

o We present a novel LSM-tree-based key-value store, namely FlexEngine, to navigate this dilemma
with a series of designs on I/O admission control and compaction deferral. FlexEngine augments
LSM-tree-based cloud databases to be practically and efficiently evolved into the multi-tenant
serverless architecture, embracing both consistent performance SLAs and high cost-efficiency
simultaneously.

e We implement FlexEngine based on a commercially-deployed RocksDB [32] and evaluate Flex-
Engine with both production traces and micro-level workloads. Our experimental results show
that FlexEngine can promise consistent performance SLAs for users while significantly improv-
ing the storage bandwidth over-subscription capability. Some production traces along with the

evaluation benchmark tool are open-sourced for public use?.

Zhttps://github.com/yingjia-wang/ServerlessKk VBench
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Fig. 1. The typical architecture of multi-tenant serverless cloud databases.

In the remainder of this paper, we first present the background in Section 2 and motivation in
Section 3. We then elaborate on the designs of FlexEngine in Section 4. The evaluation, related
work, and conclusion are introduced in Section 5, 6, and 7, respectively.

2 Background
2.1 Multi-Tenant Serverless Cloud Database

Multi-tenancy is a key principle in cloud databases to achieve high cost-efficiency, consolidating
tenants sharing the same physical resources while maintaining their logical isolation [18, 19, 23, 33,
41, 50, 64]. The prevalent adoption of multi-tenancy is predicated on the reality that most tenants
have low resource utilization on average. Therefore, it is achievable for the total resources promised
to tenants to exceed the physical capacity, which is known as over-subscription [19, 22, 41]. This
greatly enhances the overall resource utilization, considerably reducing cloud database deployment
costs and also delivering more competitive prices to the customers.

The rapid development of serverless computing has fostered a new serverless architecture for
cloud databases [19, 22, 23, 33, 40, 42, 50, 53, 72]. Serverless databases emphasize leveraging cloud
elasticity to dynamically allocate resources based on real-time workload demands, eliminating the
need for manual provisioning. By automatically handling scaling, maintenance, and optimization,
they significantly reduce the operational burden on users. Furthermore, the pay-as-you-go pricing
model ensures high cost efficiency, as users are charged only for actual resource consumption,
making serverless databases particularly advantageous for variable or sporadic workloads.

The architecture of multi-tenant serverless cloud databases is demonstrated in Figure 1. User
data physically resides in sharded clusters, each composed of a set of nodes where database tenants
are accommodated. Each cluster has a cluster manager to make decisions in placing tenants into
nodes, balancing loads across nodes, handling failovers, and so on [50]. Each database tenant is
partitioned for performance scalability and further replicated to multiple nodes for high availability.
In each node, numerous partitions from different tenants are consolidated in a virtual machine,
sharing the resources (e.g., storage, CPU, memory, and network) within it. Looking into each tenant
partition, an admission controller is necessary to enforce a per-partition resource limit, minimizing
performance interference between partitions and enabling fast performance scale-ups. In practice,
this is accomplished by restricting the maximum number of read capacity units (RCU) and write
capacity units (WCU). Each capacity unit represents one read or write operation for an item up to a
fixed size (e.g., 4KB for RCU and 1KB for WCU supported in our product).
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Fig. 2. The architecture of log-structured merge (LSM) tree.

2.2 Resource Violation

When resources in a node are over-subscribed, it is indeed possible that the total demanded
resources of tenant partitions are close to or even surpass the physical capacity, resulting in resource
violations [41]. Resource violations, however, are crucial to avoid, as the shortage of resources can
degrade service quality and even cause service unavailability. In practice, a node is typically viewed
as facing resource violations if the total requirement for a resource exceeds a high-watermark
threshold (e.g., 80%). Afterwards, a few resource-hungry tenant partitions in this node are selected
and migrated to other nodes, and this procedure continues until the total requirement drops below
the high-watermark threshold [33]. Here, configuring a high-watermark threshold for tenant
migrations, rather than referring to the exact physical capacity (i.e., 100%), is because tenant
migration is not instantaneous [41]. This can allow a period of time for migrations to complete
before the resource runs out and the service is impacted.

Serverless databases essentially guarantee the elasticity of services, i.e., can complete auto-scaling
through tenant migrations within anticipated times. To achieve this, the time for tenant migrations
must be bounded, and in practice, by two principles. First, data migration speed far exceeds the
per-partition data input speed. Second, the maximum size of each partition is limited. It is also worth
noting that the migration does not take place on the resource-violated node, but on those where
the replicas of migrated partitions are located, to avoid further exacerbating the resource shortage.
When the migration is finished and a new partition replica is successfully built, the bandwidth
traffic is taken over to the new node, after which the resource-violated node can terminate the
previous partition and release its resources.

2.3 Log-Structured Merge (LSM) Tree

Log-structured merge (LSM) tree [51] has served as the key-value storage backbone of many data
services, powering systems from embedded edge devices to distributed databases handling large-
scale workloads. Numerous industry-level LSM-tree-based key-value stores have been introduced
and adopted, such as RocksDB [13], LevelDB [12], Cassandra [10], HBase [11], and TiKV [14].
The architecture of LSM tree is demonstrated in Figure 2. Specifically, LSM tree organizes data
files in a multi-level architecture for exceptional write performance while maintaining good read
performance. At its core, newer data resides in lower levels (e.g., L0), while older data is gradually
cascaded down to higher levels (e.g., Ln). Fresh key-value pairs from write operations are initially
buffered and batched in an in-memory component called memtable. As a memtable grows and
reaches its capacity threshold (e.g., 64MB by default in RocksDB), it undergoes a transition to



the immutable state, making room for a new memtable to receive incoming writes. The frozen
memtable then enters the flush process, where its key-value pairs are sorted and persisted to storage
as a sorted string table (SST). When the number or the total size of SSTs exceeds the limit of a level,
LSM tree invokes the compaction process, which selects SSTs in that level and merges with all
key-overlapping SSTs from the next lower level. The merged new SSTs are stored in the lower level,
while the old ones are deleted. The compaction process has several crucial functions, including
eliminating redundant or obsolete data to reduce storage footprint and maintaining a balanced
hierarchical structure for read performance.

LSM tree handles user read operations and write-ahead logging (WAL) synchronously, while
processing flushes and compactions in the background asynchronously. User read operations (e.g.,
Get() or Iterator()) start with checking in-memory memtables that contain the most recent
data. If the requested data is not found in memtables, the search proceeds to SSTs from the lowest
(i.e., LO) to the highest (i.e., Ln), ensuring that the most up-to-date version of data is first located. If
the requested data is not cached in memory, data must be fetched from storage immediately and
synchronously. On the contrary, when a user-written key-value pair arrives (e.g., via Put()), it is
acknowledged as soon as it is written to WAL and memtable, leaving further data reorganization
procedures such as flushes and compactions in the background.

3 Motivation

Multi-tenant serverless cloud databases have gained ever-rising traction in both academia and indus-
try, due to their superior advantages in cost savings and user operational simplicity. Nevertheless,
as we evolve our LSM-tree-based cloud database toward the multi-tenant serverless architecture,
our product development experience uncovers a critical dilemma between maintaining consistent
performance SLAs and achieving cost-effective storage bandwidth over-subscription.

This dilemma manifests as two step-by-step challenges for us: preserving performance SLAs while
(1) achieving storage bandwidth over-subscription feasibly and (2) achieving storage bandwidth
over-subscription to a high degree. In the following, we introduce the reasons behind these challenges
and our insights that motivate our designs.

3.1 The Feasibility of Achieving Storage Bandwidth Over-Subscription

Since LSM tree handles background activities in an asynchronous way, even a few tenant partitions
with low write loads can easily lift the total storage bandwidth usage to very high levels (e.g., when
multiple partitions invoke compactions simultaneously). This significantly challenges the promise
of performance SLAs, as the resulting frequent bandwidth shortages can substantially elevate I/O
latency, which further cascades to upper-level services and is disastrous to user experiences.

To address this problem, one straightforward approach is to configure each partition with a
maximum available bandwidth, which should be sufficient for guaranteeing performance SLAs while
also effectively suppressing the total bandwidth not too high [33]. For better resource utilization,
this maximum available bandwidth should also be adjusted dynamically, i.e., taking into account
the actual loads at runtime. For example, if a partition is chronically underloaded, the bandwidth
allocated to it can be reduced, so that more partitions can be co-located in this node to improve the
overall cost-efficiency.

The automatic bandwidth limiting mechanism of RocksDB, auto-tuned rate limiter [1], is exactly
based on the above idea. It employs the token bucket algorithm [2] to control the bandwidth usage
of each RocksDB instance (see Figure 4). The read/write I/Os can only be submitted when they get
enough tokens, and tokens are replenished at a specific rate based on the current bandwidth. In
response to the ever-changing runtime loads, auto-tuned rate limiter self-adaptively adjusts the
bandwidth according to the times tokens are drained during recent token replenishment.



The detailed logic of bandwidth tuning is shown in Equation 1. During initialization, the band-
width is configured to a specified maximum value (i.e., BW,,,4x) and adjusted between this value and
its 5% according to Ty,qineq- Here, T_drained is a statistic recorded at runtime, which represents
the drained time of tokens during recent token replenishment (e.g., every 100 times by default).
Therefore, T_drained ranges from 0 to 100, inclusive of both boundaries. Specifically, if tokens
are not drained once, the bandwidth is directly set to 5% of BWj,,y. If the drained times of tokens
are more than 90 or less than 50, the bandwidth is increased by 5% or decreased by about 5%,
respectively. Otherwise, the bandwidth remains unchanged until the next decision time (i.e., after
100 times token replenishment).

0.05 X BW pax Tarained =0

BW., = max (102 X BWeurrent: 0.05 X BWinay) 0 < Tyrainea < 50 0
BW current 50 <= Turainea <= 90
min (18 X BWcurrent, BWmax) 90 < Tyrained <= 100

However, this bandwidth tuning strategy can severely break performance SLAs, as it can not respond
quickly to sudden user load growth, which is prevalent for real-world tenants (Challenge #1). This
indicates that LSM-tree-based cloud databases can not employ auto-tuned rate limiter to achieve
storage bandwidth over-subscription feasibly.

We have identified two primary limitations of the existing bandwidth tuning strategy. First,
auto-tuned rate limiter employs a unified bandwidth control for both foreground and background
tasks, which does not consider the synchronous processing nature of user reads and WAL writes. As
a result, if a long period of low bandwidth usage has suppressed the partition’s maximum available
bandwidth to a low watermark, abruptly arriving user reads and WAL writes can be unexpectedly
blocked.

Second, auto-tuned rate limiter refers to the recent bandwidth usage statistics to tune the
bandwidth in a fine-grained manner, but this inevitably suffers from a slow tuning speed. For
instance, if the bandwidth should be adjusted from the minimum (i.e., 5% of BW,,,4) to the maximum
(i.e., BWyax), it requires as long as 62 seconds (i.e., In(1/0.05) / In(1.05)).

3.2 Beyond the Feasibility: Achieving High Storage Bandwidth Over-Subscription

The primary obstacle to high storage bandwidth over-subscription is maintaining performance
SLAs in the face of storage bandwidth shortages. Here, storage bandwidth shortage refers to the
total storage bandwidth demands of tenant partitions exceeding the physical limit in the node. Even
if a partition can have a maximum available bandwidth, storage bandwidth shortages unavoidably
occur when multiple partitions exhaust their bandwidth (e.g., invoke compactions) simultaneously,
especially with a high over-subscription ratio that exacerbates the bandwidth shortfalls.

Storage bandwidth shortages jeopardize performance SLAs in two aspects: high latency and
write stalls. On the one hand, outstanding I/Os that are not processed in time can severely inflate
user-perceived latency. On the other hand, a long period of bandwidth shortfalls (due to consistently
high user write loads across multiple partitions) can lead to write stalls in LSM tree. This is because
the actual bandwidth available to each partition is no longer sufficient to digest its compactions
(especially LO-to-L1), which accumulates SSTs in L0 and throttles write operations (i.e., WCUs),
even if the service remains active for users.

To prevent storage bandwidth shortages, current practice relies on setting a high-watermark
threshold for a node, and once reaching this threshold, some bandwidth-hungry partitions are
migrated to other nodes until the system bandwidth usage falls below the threshold. However,



with a high over-subscription ratio, storage bandwidth shortages usually occur even before tenant
migrations are finished (e.g., hundreds of seconds, see Section 2.2).

While prior works have extensively explored various design spaces of LSM tree, they can not satis-
factorily address this issue, i.e., sustain performance SLAs until the end of tenant migrations (during
storage bandwidth shortages), even with highly over-subscribed bandwidth (Challenge #2). For
example, Calcspar [73] explores how to improve the latency during storage bandwidth shortages.
It proposes to control the submission of I/Os to storage, ensuring that the required bandwidth
of submitted ones is always within the maximum storage bandwidth. Since I/Os can be quickly
serviced by storage, Calcspar achieves stably low latency. However, Calcspar can not prevent write
stalls, and according to our experiments on production traces, as high as 15% of user WCUs are
blocked unexpectedly (see Section 5.2).

Speaking of reducing write stalls, a few existing works, such as CruiseDB [44], ADOC [70], and
SILK [21], propose mitigating strategies, but they are either inapplicable or insufficient. Specifically,
CruiseDB [44] proposes to reduce the operations that can be permitted into the LSM tree, which is
unsuitable in our case, as this explicitly leads to user service unavailability. ADOC [70] increases
the number of compaction threads when detecting write stalls to improve the chance of L0-to-L1
compaction being assigned a thread and also decrease the flush speed. ADOC is not usable in our
scenario because of its passive decision-making strategy, which already results in service downtime
before taking action. In addition, solely adding compaction threads can not quickly eliminate write
stalls, while it is important for us to revive user services as soon as possible.

SILK [21] proposes to schedule I/Os from different tasks according to the priority of user reads,
flushes, and compactions. More specifically, SILK prioritizes guaranteeing sufficient bandwidth
for user reads, while opportunistically allocating remaining bandwidth for other activities (i.e.,
flushes and compactions). For compactions, SILK further enables higher-level compactions other
than L0-to-L1 (which have minimal effects on read performance in a short period) to be suspended
when the available bandwidth of non-user operations is restricted.

However, SILK has two key drawbacks. First and most importantly, SILK, originally designed
for single-tenant databases, can not be simply migrated to the multi-tenant serverless architecture
due to the lack of a holistic control framework across all partitions. Specifically, each partition
manages its own SILK instance as well as the maximum available bandwidth, but due to storage
bandwidth over-subscription, the actual available bandwidth of a partition may vary, making the
partition-level control of SILK not effective in use. Second, from the technical perspective, although
suspending higher-level compactions except L0-to-L1 is useful in delaying the onset of write stalls,
we found that the effectiveness of preventing write stalls is limited. This is because, since L1-to-L2
compactions are suspended, SSTs in L1 are quickly accumulated, which continuously raises the I/O
amplification of L0-to-L1 compactions and makes it slower and slower. As a result, SSTs in LO are
quickly amassed and cause write stalls.

3.3 Summary

In conclusion, existing LSM-tree-based key-value stores can not be directly applied to multi-
tenant serverless cloud databases. On the one hand, the existing partition-level bandwidth limiting
strategy (i.e., auto-tuned rate limiter) employs a unified and recent-usage-driven mechanism to
adjust the bandwidth, which fails to respond timely to abrupt user load growth. On the other hand,
existing LSM-tree-based key-value stores can not sustain performance SLAs until the end of tenant
migrations (during storage bandwidth shortages), especially with a high over-subscription ratio.

On tackling the above issues, we are motivated to design a new key-value store, reviving LSM
tree to be served practically and efficiently in multi-tenant serverless cloud databases.
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4 Designs of FlexEngine
4.1 Overview

In this paper, we present FlexEngine, a novel LSM-tree-based key-value store. FlexEngine harmonizes
guaranteed performance SLAs with high cost-efficiency, and further significantly improves the
capability to over-subscribe storage bandwidth.

The architectural overview of FlexEngine is demonstrated in Figure 3. FlexEngine first introduces
a two-level I/O admission control framework, at the levels of tenant partition and node. The 1/0
rate limiters at both levels employ the token bucket algorithm [2] to control the bandwidth usage,
while incorporating multi-priority queues to prioritize critical tasks. However, the principles and
goals of the two levels are completely different. At the partition level, FlexEngine innovatively
separates foreground I/Os with user reads and WAL writes from background I/Os with flushes and
compactions, controlling their maximum available bandwidth individually. Specifically, FlexEngine
employs fixed-reserved maximum bandwidth management for foreground I/Os to ensure timely
processing even during sudden user load growth, while using dynamically-tuned maximum band-
width management for background I/Os to maximize the overall cost-efficiency (for Challenge
#1). In contrast, at the node level, FlexEngine regulates I/Os from all partitions, ensuring that the
required bandwidth of submitted I/Os is always within the maximum storage bandwidth, thereby
achieving consistently low latency (for Challenge #2).

In addition to the two-level I/O admission control framework, FlexEngine further introduces
a two-stage compaction deferral mechanism. Together with node-level I/O admission control that
secures better latency, this mechanism aims to postpone the occurrence of write stalls long until
the end of tenant migrations, effective even with highly over-subscribed storage bandwidth (for
Challenge #2). The key observation is that the time for tenant migrations is finite, and thus, we
can temporarily accumulate data in low levels (i.e., L1 at the first stage and L0 at the second stage)
of the pyramid-like structure of LSM tree, and revert it to the normal layout in the background
after the finish of tenant migrations. In this way, the system bandwidth usage can be dramatically
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lowered, within the over-subscribed physical limit for a much longer period without degrading
performance SLAs.

In the following, we introduce the detailed designs of two-level I/O admission control and two-
stage compaction deferral in Section 4.2 and 4.3, respectively. We conclude with several meaningful
discussions in Section 4.4.

4.2 Two-level /O Admission Control

In this section, we first introduce the basics of the token bucket algorithm as well as the integration
with multi-priority queues in Section 4.2.1. We then present the detailed designs of partition-level
and node-level I/O admission control in Section 4.2.2 and 4.2.3, respectively.

4.2.1 Basics of Token Bucket Algorithm with Multi-Priority Queues. The token bucket algorithm is
a classical method for rate limiting and traffic shaping [2]. As shown in Figure 4, it operates by
maintaining a bucket of tokens, where each token grants permission to process a unit of work
(e.g., a byte of data). Tokens in the bucket are replenished at a fixed rate, and incoming tasks must
consume a corresponding number of tokens to proceed. If there are not sufficient tokens available,
tasks must be postponed. By enforcing a controllable rate, the token bucket mechanism guarantees
system responsiveness while also providing system stability.

The token bucket algorithm can further support multi-priority queues, which enables differenti-
ated token allocation based on task importance. In this model, multiple queues, each assigned a
priority level, compete for tokens from the same shared bucket. A common implementation of this
is based on weighted fair queueing (WFQ) [3], which grants higher-priority queues more tokens
to ensure critical tasks can be processed in time, while also giving lower-priority queues a small
amount of tokens without starving them. By blending the awareness of task importance, the token
bucket algorithm becomes more practical in meeting real-world system requirements and further
improves overall efficiency.

For example, RocksDB maintains three priority queues competing for tokens, representing that
I/Os come from user reads and WAL (high-priority), flushes (medium-priority), and compactions
(low-priority), respectively. When new tokens are replenished, RocksDB determines an order
of different queues for allocation during this round, using a method similar to flipping a coin.
Specifically, RocksDB first randomly selects between "high" and "medium and low", with "high"
having 10X higher probability. After determining the order between "high" and "medium and low",
RocksDB selects between "medium" and "low", with "medium" also having 10x higher probability.
Once the order of different queues is decided, RocksDB prioritizes processing tasks in the earlier
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queues during this round, and only allocates tokens to later queues when earlier ones have no tasks
remaining.

4.2.2  Partition-level I/0 Admission Control. The goal of partition-level I/O admission control is to
ensure performance SLAs for tenant partitions while effectively stabilizing the system bandwidth
usage. To address the challenge of sustaining performance SLAs during sudden user load growth,
FlexEngine assigns each partition two I/O rate limiters, which control the maximum available
bandwidth of foreground and background I/Os individually. Both rate limiters employ the simple
yet efficient token bucket algorithm, as described in Section 4.2.1. Specifically, incoming I/Os must
acquire enough tokens (each corresponding to a byte) from the bucket before being submitted to
storage. If there are not enough tokens yet, the I/Os must be deferred.

However, they are different in the following two aspects. First, a key question is how to determine
the token replenishment rate, i.e., configure the maximum available bandwidth at runtime. To
this end, FlexEngine employs distinct strategies for them, taking into account their different
processing natures (i.e., synchronous or asynchronous). Specifically, FlexEngine employs fixed-
reserved maximum bandwidth management for foreground I/Os to ensure timely processing, while
using dynamically-tuned maximum bandwidth management for background I/Os to maximize
the overall cost-efficiency. The improvement on cost-efficiency here comes from the fact that the
maximum available background bandwidth can be dynamically reduced if the user write load is
constantly low. Thus, more partitions can co-exist in the node to enhance the resource utilization.

Second, they have different setups of multi-priority queues. As shown in Figure 5, the rate limiter
for foreground tasks only holds one priority queue, i.e., both user reads and WAL writes have the
same priority. On the contrary, the rate limiter for background tasks maintains two priority queues,
with the high-priority queue for flush I/Os and the low-priority queue for less-critical compaction
I/Os. Same as the default configuration in RocksDB [5], the weighted ratios between high- and
low-priority queues are 10:1.

We then introduce the detailed bandwidth tuning logic of foreground/background I/O rate
limiters:

e Foreground I/O Path. The maximum available bandwidth for foreground I/Os is always reserved
according to the sum of two components. One is for user reads, which is obtained by the maximum
number of RCUs per second (RCUax_num_psec) multiplied by the maximum supported RCU size
(RCUpax_size) and the read amplification factor (RAF). The other is for WAL writes, which is
calculated by the maximum number of WCUs per second (WCUax_num_psec) multiplied by the
maximum supported WCU size (WCUpax_size)-
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As we have introduced in Section 2.1, each capacity unit (i.e., RCU or WCU) represents a read or
write operation for an item up to a fixed size (i.e., RCUpay_size 0 WCUpax_size)- RCUmax_num_psec
and WCUmax_num_psec are per-partition limits, which enforce the resource usage of each partition
to minimize performance inference between partitions.
On the other hand, RAF represents the multiples of actual disk read I/O sizes to each RCU item
size (e.g., 4KB). A showcase of how to derive the upper bound of RAF is introduced as follows.
Assume we have four levels of SSTs from L0 to L3. Since SSTs in L0 and L1 are usually cached in
memory for high access performance, each RCU requires reading at most two SSTs (i.e., one from
L2 and the other from L3). Since an SST is ordered internally, the address space of each RCU
is mapped to at most two logical blocks (i.e., 4KB*2=8KB) because each data block in the SST
may not be logical-block-aligned. As a result, the upper bound of RAF is 4 (i.e., 2 SSTs*8KB/4KB
RCU=4) in this case.

e Background I/O Path. The maximum available bandwidth for background I/Os is dynamically
tuned based on the average per second loaded data volume from WCUs (Dataayg psec) multiplied
by the background I/O amplification of LSM tree (LSM-BA).

Background BW_ .. = Data,yg psec X LSM-BA 3)

We note that Datasyg psec is not the same as WCUyyayx_num multiplied by WCUpyax size used in the
foreground I/O path. Specifically, Data,yg psec represents the actual loaded data volume, while
users typically invoke a much smaller number of WCUs than WCUnax_num_psec and a WCU may
contain a much smaller data volume than its supported WCUpay size-

By default, Data,yg psec is adjusted every minute and recorded as the average amount of loaded
data per second during this period. For example, if a partition is loaded 120MB of data in total
during the last minute, Dataayg psec is set to 120MB/60s=2MB/s for the current minute.

On the other hand, LSM-BA defines the multiples of disk I/O sizes (including both reads and
writes) to Dataayg psec. A showcase of how to derive the upper bound of LSM-BA is introduced as
follows [6]. By default, RocksDB sets the size of L0 to be equal to that of L1, and for higher levels
starting from L1, the size multiplier of adjacent levels is 10. If a partition currently has four levels
(i-e., LO to L3), the write amplification is 1(L0)+2(L0-to-L1)+11(L1-to-L2)+11(L2-to-L3)=25. Since
SSTs in L0 and L1 are usually cached in memory, the read amplification is 10(L1-to-L2)+11(L2-
to-L3)=21. The L1-to-L2 read amplification is 10 (not 11) because the associated SST in L1 is
cached, so we only read 10 SSTs in L2 from storage. Thus, the upper bound of LSM-BA is 46 (i.e.,
25+21=46) in this case.

4.2.3 Node-level I/0 Admission Control. The objective of node-level I/O admission control is to
achieve consistently low latency even during storage bandwidth shortages. To this end, FlexEngine
further integrates a node-level I/O rate limiter, which regulates I/Os from all partitions holistically.
It also employs the token bucket algorithm, but incorporates three priority queues to synergize
with the awareness of I/O importance in partition-level partners.

As shown in Figure 5, the high-, medium-, and low-priority queues keep I/Os from foreground
tasks (i.e., user reads and WAL writes), flushes, and compactions, respectively. Regarding the
maximum available bandwidth (which decides the token replenishment rate), the node-level rate
limiter configures it to the maximum storage bandwidth, ensuring that the required bandwidth
of submitted I/Os is always within the maximum storage bandwidth. In this way, dispatched I/Os
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(especially those critical from user reads) can be quickly served, which substantially improves the
user-perceived latency. As for how to allocate tokens between queues, the node-level rate limiter
always prioritizes high-priority foreground I/Os if they exist, making sure these I/Os that have
fixed-reserved bandwidth in partitions are not unexpectedly blocked. For medium- and low-priority
I/Os, their weighted ratio is still 10:1 by default.

Finally, it is worth noting that the node-level I/O rate limiter manages all partitions in this node
at any moment, especially taking into account the partition move-ins and move-outs. For example,
if the total storage bandwidth required by all partitions compared to the physical capacity is low,
new partitions can be added to this node by the cluster manager, and vice versa.

4.3 Two-Stage Compaction Deferral

To sustain performance SLAs during storage bandwidth shortages, employing only node-level
I/O admission control is not sufficient. This is because, although node-level I/O admission control
rescues the latency, a long period of bandwidth shortfalls (due to consistently high user write loads
across multiple partitions) can result in write stalls, which disastrously disrupts users’ active services.
More specifically, in the event of storage bandwidth shortages, the actual available bandwidth of
each partition is no longer sufficient to digest its compactions (especially L0-to-L1), yielding SSTs
in LO to accumulate quickly. If the number of SSTs in L0 surpasses the threshold of write stalls (e.g.,
20 in RocksDB?® [4]) before tenant migrations are finished, performance SLAs are compromised.

In response to this, FlexEngine proposes a two-stage compaction deferral mechanism, the goal
of which is to temporarily suppress the I/O amplification (as well as the bandwidth requirement)
during the period of tenant migrations, so as to prevent the occurrence of write stalls. In the
following, we first introduce its detailed rules in Section 4.3.1, and then discuss its implications on
system memory usage and read performance in Section 4.3.2.

4.3.1 Transition Flow. When detecting storage bandwidth violations (i.e., the system bandwidth
usage surpasses the high-watermark threshold), as shown in Figure 6, FlexEngine enters the first
stage: proactively suspending compactions other than LO-to-L1 in some partitions. By suspending these
high-level compactions, the I/O amplification as well as the bandwidth requirement is drastically

3RocksDB partially stalls and completely stalls new key-value pairs when there are 20 and 32 SSTs in L0, respectively. In
this paper, write stall indicates the first case because even partial data throttling is not acceptable for users.
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lowered. This is because the I/O amplification of background activities now is only from flushes
and LO-to-L1 compactions.

However, suspending L1-to-L2 as well as higher-level compactions inevitably amasses SSTs in L1,
and because more and more SSTs in L1 are wrapped in L0-to-L1 compactions, the I/O amplification
of LO-to-L1 compactions is continuously increased. This constantly slows down the digestion of
L0-to-L1 compactions, leads to a growing number of SSTs in L0, and eventually causes write stalls.
Our experiments in Section 5.3.2 show that only the first stage can not prevent write stalls and
maintain performance SLAs for long (i.e., until tenant migrations are finished) with a high degree of
storage bandwidth over-subscription. Particularly, write stalls can occur when the over-subscription
ratio is only 2.

Hence, once the number of SSTs in L0 reaches 60% of the write stall threshold (12 by default),
FlexEngine moves into the second stage, in which only intra-L0 compactions are performed and
LO-to-L1 compactions are also suspended. Specifically, FlexEngine continuously monitors the number
of SSTs in L0, and when it is at least four, FlexEngine can invoke an intra-L0 compaction. Each
intra-L0 compaction picks multiple SSTs from L0, merges them into one larger SST, and still places
the new SST in L0. Multiple intra-L0 compactions can be invoked concurrently because the newly
generated SSTs remain in LO where keys across different SSTs are unordered. One noteworthy
point for concurrent intra-L0 compactions is that, to consistently maintain the chronological order
of SSTs for read correctness, FlexEngine selects current SSTs for intra-L0 compactions always in
contiguous batches, where a batch indicates a set of SSTs with contiguous chronological order.

By transitioning from L0-to-L1 compactions to intra-L0 compactions, FlexEngine avoids merging
with the already massive data in L1, thereby effectively suppressing the I/O amplification again.
The effect of such a transition is clearly visualized in Figure 7a, which depicts the number of SSTs
in LO at runtime when the second stage is enabled or not (more experimental setups in Section 5.1
and 5.3.2). We can observe that, starting around 131s, intra-L0 compactions (i.e., red line) constantly
convert multiple SSTs in L0 into a larger one, which suppresses the number of SSTs in L0 again
and again to prevent the occurrence of write stalls. Conversely, if not transitioning to the second
stage (i.e., cyan line), write stall quickly occurs at only about 187s.

Despite the fact that the second stage is not a panacea and the I/O amplification is also con-
tinuously growing as the times of intra-L0 compactions rise, we found that it is effective enough.
Particularly, our experiments in Section 5.3.2 demonstrate that FlexEngine with two-stage com-
paction deferral can sustain performance SLAs even when the over-subscription ratio is 3 and all



partitions exhaust their maximum available bandwidth for background I/Os. Moreover, as shown
in Section 5.4, if the ratio of write-intensive partitions in a node is not too high (e.g., 50%), the
supported over-subscription ratio of FlexEngine without compromising performance SLAs is as
high as 7. It is also worth noting that, when the system storage bandwidth becomes sufficient again
(either because the user loads become low or tenant migrations are finished), FlexEngine resumes
suspended compactions in the background and restores LSM tree to the normal pyramid structure.

4.3.2  Implications on System Memory Usage and Read Performance. Since the lowest-level SSTs
(e.g., L0 and L1 in our environments) are pinned in memory for high access performance, FlexEngine
increases application-level memory usage when two-stage compaction deferral occurs, as more data
is temporarily accumulated in L0 and L1. However, it is worth noting that such memory expansion
due to larger L0 and L1 is finite and controllable, and does not lead to potential out-of-memory
(OOM) issues. This is because in serverless cloud databases, the time for tenant migrations is
effectively bounded (see Section 2.2). Therefore, once partitions with high write loads are migrated
out, system bandwidth usage returns low, allowing deferred compactions to be resumed. As a result,
the duration of two-stage compaction deferral is also bounded. Given the limited data input speed
(via the maximum number of WCUs per second and the maximum WCU size, see Section 2.2),
the temporarily accumulated data in L0 and L1, which is the cause of application-level memory
expansion, remains bounded as well.

Figure 7b clearly illustrates the changes in application-level memory usage when two-stage
compaction deferral occurs. The results are measured based on the setups in Section 5.1 and 5.3.2,
where there are 32 partitions co-located and each partition continuously receives 3MB/s data input.
We can see that FlexEngine itself occupies increasingly more memory as compaction deferral
proceeds, and the memory peak compared to the start is close to the total data input of all partitions
during this period (i.e., 32*3MB/s*200s=19.2GB). Specifically, FlexEngine occupies up to about 72%
of the system memory (i.e., 64GB). However, it is worth noting that, in production environments
where the system memory of ECS instances, the number of partitions, and the per-partition data
input speed are appropriately coordinated, this predictable memory spike of FlexEngine can be
safely controlled by the provider.

Speaking of read performance, overall, the two-stage compaction deferral mechanism incurs
minimal overhead because short-term deferral of high-level compactions has minimal effect on
user read performance [21, 73]. Specifically for L0 where its SSTs have overlapped key ranges, the
read performance is also well secured due to the following two main reasons. First, SSTs in L0 are
pinned in memory for high access performance. Second, the number of SSTs in L0 is continuously
suppressed, either by L0-to-L1 compactions (at the first stage) or intra-L0 compactions (at the
second stage).

4.4 Discussions

Architectural choices of multi-tenant LSM trees. As shown in Figure 3, we allocate each
tenant partition an independent LSM tree. The key reason behind this is reliability, which is crucial
for cloud database products. Specifically, by operating separate LSM trees for each partition, we
can configure flexible and independent data backup strategies for customers. Another plausible
approach we have considered is allocating each partition a column family, rather than an LSM-
tree-based RocksDB instance. The primary drawback of this approach is that all column families
share and compete for the same write-ahead logging (WAL), thereby encountering a severe write
performance bottleneck.

Generalizing FlexEngine into other LSM-tree-based key-value stores. The designs of Flex-
Engine, which center on I/O rate-limiting and compaction deferral (or management), can be
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non-intrusively generalized to other LSM-tree-based key-value stores because these two compo-
nents are fundamental for the LSM tree structure. Specifically, I/O rate-limiting is crucial for system
performance stability, which coordinates the intrinsic bandwidth competition between foreground
and background tasks. On the other hand, compaction management with different strategies is also
essential, since it allows users to achieve their expected balance between write amplification, read
amplification, and space amplification.

How the decoupling process architecture for foreground and background tasks of Flex-
Engine could benefit other DBMS. Overall, our proposed architecture works if temporarily
deferring background tasks does not notably affect user experiences, which can be met in many
DBMS. Meanwhile, the more resources required by background tasks, the greater benefits our
proposal can offer. We further elaborate with the following two examples. For DBMS checkpointing,
users often specify their anticipated checkpointing time window, so our proposal works if the
deferral time is within the specified time window. While for Postgres’ vacuum [15], deferring its
garbage collection may slow down user queries, so a more meticulous in-context investigation is
required to secure user experiences, similar to how we design FlexEngine for LSM trees.

5 Evaluation
5.1 Experimental Setups

FlexEngine is implemented based on a commercially-deployed RocksDB [13], and runs in an ECS
virtual machine from Alibaba Cloud (type: ecs.g5.4x.large) with 16 vCPUs and 64GB memory. The
storage device is an Alibaba Cloud Enterprise SSD (ESSD) [7], and its performance setups are
detailed in each section below.

We compare FlexEngine with four representative state-of-the-art LSM-tree-based key-value
stores, including (vanilla) RocksDB [13], RocksDB with auto-tuned rate limiter [1], SILK [21], and
Calcspar [73]. The designs of auto-tuned are introduced in Section 3.1, while the principles of SILK
and Calcspar are shown in Section 3.2. In all evaluated key-value stores, the write buffer size is set
to a relatively small 16MB, ensuring that the memory usage of the multi-tenant system not too
high. For each partition, there are a maximum of 4 write buffers, with both L0 and L1 triggering
compactions with the next levels when their sizes reach 64MB.

5.2 Production Workload Performance

In this section, we first evaluate FlexEngine with our production workload, and our goal is to
examine its effectiveness in real-world deployments. Specifically, we collect a node-level production
trace from our deployment environments for one week, and replay it on FlexEngine as well as
four compared state-of-the-art works. We focus on two primary metrics in relation to performance
SLAs: (1) the ratio of normally-serviced WCUs, which indicates the ratio of WCUs not unexpectedly
suspended by write stalls, and (2) latency of WCUs or RCUs on average (Avg.), at 99th percentile
(P99), and 99.9th percentile (P99.9). In particular, only a ratio of 100% for normally-serviced WCUs
is satisfactory for the storage engine, while for latency, the lower the better.

The results are demonstrated in Figure 8, with (a), (b), and (c) showing the ratio of normally-
serviced WCUs, WCU latency, and RCU latency, respectively. These metrics are presented as the
average value of all partitions in the node. From Figure 8a, we can first observe that only FlexEngine
is capable of serving WCUs from all partitions normally, thanks to the meticulous designs on both
two-level I/O admission control framework and two-stage compaction deferral mechanism. In
contrast, all other approaches, i.e., RocksDB, RocksDB with auto-tuned, Calcspar, and SILK, suffer
from varying degrees of write blocking from 15% to 30%, which severely sacrifices user service
availability.
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Moreover, as shown in Figure 8b, FlexEngine achieves the best WCU latency, significantly
lower than the second-best work Calcspar in average, P99, and P99.9 by 69.0%, 91.7%, and 96.7%,
respectively. All other approaches fail to avoid the occurrence of write stalls and incur the tail
latency of WCUs as high as several milliseconds. Regarding the RCU latency in Figure 8c, FlexEngine
also attains the best RCU latency, similar to Calcspar but significantly outperforming other schemes.
Here, the reason Calcspar also achieves good RCU latency is that both FlexEngine and Calcspar
holistically control I/Os from all partitions and prioritize the processing of user reads. We finally
note that the superior latency of FlexEngine on both WCUs and RCUs is exhibited across all
partitions without showing significant deviations.

5.3 Performance Breakdown Analysis

In this section, we individually investigate the design effectiveness of FlexEngine via breakdown
experiments. In Section 5.3.1, we explore if partition-level I/O admission control can maintain
performance SLAs during sudden user load growth (Challenge #1). Then in Section 5.3.2, we study
if node-level I/O admission control and two-stage compaction deferral can sustain performance
SLAs during the end of tenant migrations, with a high storage bandwidth over-subscription ratio
(Challenge #2).

5.3.1 When User Load Suddenly Increases. To examine the performance of FlexEngine when user
load suddenly increases, we first preload a partition with 10M WCUs (each for a 1KB key-value
pair) and then run a workload on it. This workload runs for 40 seconds: it initially has no traffic to
the partition for the first 10 seconds, and then constantly calls 3K RCUs per second with Zipfian
distribution for the remaining 30 seconds. We compare FlexEngine to the state-of-the-art work in
the field: RocksDB with auto-tuned I/O rate limiter [1].

Figure 9a demonstrates the number of serviced RCUs per second at runtime. We can see that,
starting from the 10th second, FlexEngine can serve all the RCUs with no blocking. This mainly
contributes to the foreground/background separated maximum bandwidth management in partition-
level I/O admission control. More precisely, the foreground user reads have a reserved bandwidth
for use, thereby achieving non-blocking RCU processing as well as excellent latency.

On the contrary, auto-tuned can only service 29.2% of RCUs at the 10th second. This is because,
as introduced in Section 3.1, a long time of low bandwidth utilization has suppressed the maximum
available bandwidth of auto-tuned to the lowest watermark. To make matters worse, RocksDB with
auto-tuned can only admit 3K RCUs per second after the 38th second, which means that it suffers
from high user-perceived latency for as long as 28 seconds. We also depict the average, P99, and
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P99.9 latency of RCUs in Figure 9b, which clearly reveals that, compared to auto-tuned, FlexEngine
substantially improves the average, P99, and P99.9 latency by 96.6%, 99.5%, and 99.5%, respectively.

5.3.2  When Storage Bandwidth Shortages Occur. To study the performance of FlexEngine when
storage bandwidth shortages occur, we co-locate 32 partitions in a node and first preload each with
10M WCUs (each for a 1KB key-value pair). After that, we employ a workload that continuously
inserts 3K WCUs per second into all partitions (representing consistently high user loads), and the
workload runs until all tenant migrations are finished. According to Section 4.2.2, each partition is
configured with 60MB/s maximum available bandwidth for background tasks, obtained by multi-
plying the average per second loaded data volume from WCUs (i.e., Datayg psec, 3K*1KB=3MB/s)
and the LSM background I/O amplification (i.e., LSM-BA, 20 measured in this experiment).

To enhance the comprehensibility of experiments, we also evaluate under different degrees of
storage bandwidth shortages. This is achieved by configuring the maximum ESSD bandwidth*, minus
the fixed-reserved bandwidth for foreground tasks, below the total required background bandwidth
of partitions above (i.e., 32"60MB/s= 1920MB/s). For simplicity, in the following, we define the
ratio of maximum ESSD bandwidth minus foreground reserved bandwidth to the total required
background bandwidth of partitions as background over-subscription ratio (BOSR). In this section,
BOSR is set to 1.5, 2, 2.5, and 3, with higher BOSRs evaluated in the next section.

We compare FlexEngine with RocksDB as well as two new schemes for ablation experiments:
® RocksDB+Node, which indicates that only node-level I/O admission control is applied based on

the vanilla RocksDB.

o RocksDB+Node+FirstStage, which represents that node-level I/O admission control and the first
stage of two-stage compaction deferral (i.e., only defer higher-level compactions other than
L0-to-L1 and not transition to intra-L0 compactions) are employed based on the vanilla RocksDB.
The results are demonstrated in Figure 10. Figure 10a shows the ratio of normally-serviced WCUs

with maximum, average, and minimum values across the partitions (i.e., Max., Avg., and Min.). We

can first see that FlexEngine can satisfactorily serve all WCUs in all partitions with BOSRs ranging
from 1.5 to 3, while other schemes suffer from different degrees of service unavailability.

Specifically, the vanilla RocksDB performs the poorest: it is unable to serve WCUs in some
partitions even with a BOSR of 1.5 (i.e., 2.2% on average in partitions and up to 11.0% in a partition);
at a BOSR of 3, an average of 26.9% WCUs from partitions can not be admitted. RocksDB+Node acts
a little better but also starts to block some WCUs at a BOSR of 2 (i.e., 1.1% on average in partitions

4The maximum ESSD bandwidth is typically positively correlated with the storage capacity [7, 9, 67]. For example, in

our used ESSD, the maximum bandwidth is half of the storage capacity (in GBs) plus 120, or 4000, whichever is smaller.
Therefore, we can vary maximum ESSD bandwidth simply via adjusting the storage capacity.
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Fig. 10. Performance in the ratio of normally-serviced WCUs and WCU latency under a workload
with consistently high write loads. There are 32 partitions co-located in a node, and their total
required background bandwidth is background over-subscription ratio (BOSR) times the current
maximum ESSD bandwidth minus the fixed-reserved bandwidth for foreground tasks. For the ratio
of normally-serviced WCUs, we present the maximum, average, and minimum values across the
partitions. For the latency, we show the average, P99, and P99 values, which have been averaged
across the partitions.

and 9.9% at most in a partition), and at a BOSR of 3, an average of 15.8% of WCUs from partitions
are unserviceable. When the first stage of the two-stage compaction deferral mechanism is also
added (i.e., RocksDB+Node+FirstStage), the ratio of WCUs that can not be normally served is further
reduced; at a BOSR of 3, an average of 7.1% of WCUs can not be admitted.

In Figure 10b, we further depict the latency of these evaluated schemes, where the average,
P99, and P99.9 latency are presented. We can notice that FlexEngine significantly improves the
latency in whether average, P99, or P99.9, all to sub-100 microseconds. Specifically, in comparison
to the vanilla RocksDB, at a BOSR of 1.5, FlexEngine achieves 83.3% lower average latency, 98.2%
lower P99 latency, and 97.7% lower P99.9 latency, respectively. When BOSR is increased to 3, the
latency improvements are also substantial: the average latency is reduced by 97.3%, the P99 latency
is reduced by 99.4%, and the P99.9 latency is reduced by 97.4%, respectively. Compared to the
second-best scheme RocksDB+Node+FirstStage, FlexEngine achieves similarly good latency with
BOSRs of 1.5 and 2 because both of them do not encounter write stalls yet. While at a BOSR of 3,
FlexEngine reduces the average latency, P99 latency, and P99.9 latency by 88.1%, 99.3%, and 97.0%,
respectively.
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Fig. 11. Performance in the ratio of normally-serviced WCUs with different background over-
subscription ratios (BOSR), different ratios of burst partitions, and different durations to experience
high user write loads. For the ratio of normally-serviced WCUs, we present the maximum, average,
and minimum values across the partitions. 8, 16, and 32 burst partitions indicate that the ratios of
burst partitions are 25%, 50%, 100%, respectively.

We draw two conclusions from the above results and analysis. First, node-level /O admission
control and each stage of two-stage compaction deferral contribute to a certain degree to sustaining
performance SLAs, in both the ratio of normally serviced WCUs as well as the latency. Second,
FlexEngine, with these techniques incorporated, can effectively maintain performance SLAs, even
when BOSR is 3 and all partitions consistently reach their highest write loads.

5.4 Performance with High Storage Bandwidth Over-Subscription

In this section, we aim to shed further light on the potential of FlexEngine in supporting high
storage bandwidth over-subscription and improving cost-efficiency. To this end, we further enrich
the experiments from three aspects: (1) configuring different BOSRs from 4 to 7, (2) evaluating
different ratios of burst partitions, i.e., 25%, 50%, and 100%, and (3) testing different durations to
experience high user write loads, i.e., 50s, 100s, 200s, and until the finish of tenant migrations (over
200s, described next).

Same as in Section 5.3.2, we co-locate 32 partitions in a node and preload each with 10M WCUs
(each for a 1KB key-value pair). Each partition also has 60MB/s maximum available bandwidth for
background tasks, and the total required background bandwidth is still 1920MB/s. Given the setups
of BOSR, the maximum ESSD bandwidth minus foreground bandwidth now ranges from 640MB/s
(at a BOSR of 3) to a mere 274MB/s (at a BOSR of 7). For each burst partition, the workload inserts
3K WCUs per second. While for each non-burst partition, the workload inserts 3K/BOSR WCUs
per second. This is to control the actual required bandwidth of the non-burst partition exactly
the same as the over-subscribed bandwidth. Assume the partition migration speed on average is
50MB/s, it requires over 200 seconds to completely migrate a 10GB partition (i.e., 10M*1KB WCU)

20



50 Seconds 100 Seconds  [ZZ]1 200 Seconds [ Migrations Finish

—.4000 55| —=4000 iy
) e ) —
2 32 o PR
3000 0y 3000
82000 82000
© ©
- -
1000 a_‘ 1000
aNMsS s 0000 mmms 0000 ~OO 00| aNMmMmM 00O MMt OO SO oo o
NN A= ANNN TNy Add-H SA0NNN T s Sm 7—17—1‘ -—4-—4‘ VNN A AeEN NNy Ade . NN s 7—17—1‘ r—4-—<‘
Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9
8 Burst Partitions 16 Burst Partitions 32 Burst Partitions 8 Burst Partitions 16 Burst Partitions 32 Burst Partitions
(a) BOSR=4 (b) BOSR=5
—~4000 —~4000 e 2
@ 0 i [N
= 3 RR me
2.3000 2.3000
9 9
= f=
82000 82000
1000 1000 —e
mmes 0000 Mmein© oinm TN Ot mmon oot ST adl) [ s
NNO© HHoS HANR NN Mede AN wooo F5A4 SNNN hnnor Anad ZARN Tesois Aol | S5
Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9 Avg. P99 P99.9
8 Burst Partitions 16 Burst Partitions 32 Burst Partitions 8 Burst Partitions 16 Burst Partitions 32 Burst Partitions
(c) BOSR=6 (d) BOSR=7

Fig. 12. Latency with different background over-subscription ratios (BOSR), different ratios of burst
partitions, and different durations to experience high user write loads. For latency, we show the
average, P99, and P99 values, which have been averaged across the partitions. 8, 16, and 32 burst
partitions indicate that the ratios of burst partitions are 25%, 50%, 100%, respectively.

that still receives data inputs. With different durations to experience high user write loads (i.e., 50s,
100s, 200s, and until the finish of tenant migrations), the workload stops at the specific times and
we record the metrics.

Figure 11 and 12 demonstrate the performance in the ratio of normally-serviced WCUs and
the latency, respectively. First, from the dimension of ratios of burst partitions, we can see that
FlexEngine can satisfactorily sustain performance SLAs with 50% burst partitions (i.e., there are
16 burst partitions), even when BOSR is as high as 7. Second, from the dimension of durations to
experience high user write loads, FlexEngine can maintain performance SLAs if the high user write
loads last for no more than 100 seconds, even when BOSR is as high as 7. Third, the results do
reveal the limitations of FlexEngine, which may potentially sacrifice performance SLAs due to
write stalls when the majority of partitions are burst and user write loads are consistently high
for a long time (e.g., 200 seconds). This is because the proposed two-stage compaction deferral
mechanism greatly lengthens the time to accumulate data in L0 and L1, but it can not always keep
accumulating. When the I/O amplification of the second stage reaches the threshold that the highly
over-subscribed storage bandwidth can not tolerate, write stalls unavoidably happen.

Nevertheless, we believe FlexEngine is competent enough to be deployed in real-world multi-
tenant serverless cloud databases for the following two reasons. First, as shown in Section 5.3.2,
FlexEngine can effectively maintain performance SLAs when BOSR is 3 and even all partitions
consistently reach their highest write loads. Second, as shown in this section, FlexEngine can also
sustain performance SLAs when BOSR is as high as 7 if the ratio of write-intensive partitions in
the node is not too high, such as 50%.
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6 Related Work

Multi-tenant serverless cloud databases. Several works explore the architectural designs of
multi-tenant serverless cloud databases. Cao et al. propose a disaggregated cloud-native database
architecture in Alibaba PolarDB Serverless with remote memory/storage pools and optimizations
to match local performance while enabling multi-dimensional elasticity [23]. Poppe et al. introduce
how Microsoft Azure proactively predicts database pause/resume patterns to minimize cold-start
delays while optimizing resource reclamation thresholds in serverless SQL databases [53]. Zhang
et al. introduce how PolarDB Serverless achieves seamless migration via transaction migration
policy and read scale-out through strong consistency on secondary nodes, enabling uninterrupted
scaling, low-overhead instance migration, and consistent high-performance reads [72]. Barnhart
et al. introduce how Aurora Serverless balances high host utilization with elastic scaling via
spare-capacity-aware placement, live migration, and token-bucket rate control [22].

In contrast with these works, we uncover a dilemma when the multi-tenant serverless cloud

database architecture meets LSM tree as its storage engine, and propose a new LSM-tree-based
key-value store to navigate this dilemma.
LSM tree. LSM tree has a vast design space with hundreds of tuning knobs and has been exten-
sively studied in the past [58, 60]. Representative directions include optimizing point and range
querying [27, 28, 30, 43, 49, 71], optimizing storage data layout [26, 36, 37, 46, 56, 66, 68], optimizing
compactions [17, 31, 45, 59, 61, 69], and workload-aware performance tuning [29, 38, 47, 48, 65].

Different from the existing works that are based on single-tenant data stores, to the best of our

knowledge, FlexEngine is the first to investigate how to design an LSM-tree-based key-value store
in the multi-tenant serverless cloud database.
Rate limiting. There are numerous classical algorithms for rate limiting, such as token bucket
algorithm, leaky bucket algorithm, fixed window algorithm, and sliding window algorithm, each
with its own pros and cons [16]. Among them, FlexEngine (as well as RocksDB) opts for the token
bucket algorithm mainly due to its responsiveness to traffic bursts through accumulated tokens,
which is crucial for synchronous tasks.

Unlike rate limiting within an application, a body of research optimizes distributed rate limiting
(DRL) in cross-node network environments with high communication overhead [24, 35, 55, 63].
By distributing rate-limiting decisions across multiple nodes, DRL achieves high scalability but
also faces challenges in accuracy and responsiveness to traffic changes. Moreover, there is also a
series of studies on rate limiting dedicated to sharing [20, 39, 52, 62] and scalability [25, 34, 54, 57]
in cloud datacenters.

7 Conclusion

Over the past few years, multi-tenant serverless cloud databases have experienced an unparalleled
surge in popularity. Yet there have been no prior works showing if and how to build an LSM-tree-
based cloud database in this promising architecture. In this paper, we reveal a critical trade-off
between performance SLAs versus storage bandwidth over-subscription for cost efficiency, and
present FlexEngine to navigate this dilemma. Experimental results show that FlexEngine can
promise consistent performance SLAs for users while significantly improving the storage bandwidth
over-subscription capability.
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