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ABSTRACT
Zoned Namespace (ZNS) is an emerging interface that shows great
promise for high-density and low-cost cloud environment deploy-
ments. Modern high-density SSDs, on the other hand, typically
use a hybrid SLC/QLC architecture to mitigate the deficiencies of
QLC. Unfortunately, simply integrating ZNS with the mainstream
host-transparent hybrid architecture would lead to substantial per-
formance and endurance overhead, defeating the purpose of this
architecture in the first place.

In this paper, we examine the possibility of coupling heteroge-
neous flash management (i.e., SLC and QLC) into the existing zone
management at the host. We present ZnH2, an augmented ZNS-
based storage system with host-managed heterogeneous zones.
ZnH2 comprises both SSD firmware and host software designs to
unleash the full potential of the hybrid architecture. We build ZnH2
based on RocksDB, the mainstream application of ZNS, and its
filesystem backend ZenFS. Evaluation on YCSB benchmark shows
that, compared to the host-transparent counterpart, ZnH2 achieves
up to 28.9% higher load performance and at most 61.1% reduction
on the QLC write volume. ZnH2 also increases the throughput in
YCSB macro-benchmarks by 9.5% on average.
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1 INTRODUCTION
Flash-based solid-state drives (SSDs) have long held a high share of
the storage market due to their notable advantages in performance,
energy consumption, and impact resistance. They typically employ
the traditional block interface, which abstracts the flash storage
space into logical blocks that can be read or written randomly.
Although this abstraction simplifies host management and software
design, SSD requires a complex flash translation layer (FTL) inside to
conceal the discrepancy between the block interface and underlying
flash characteristics. Nowadays, flash-based SSDs are not ideal and
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keep evolving, and they are undergoing innovation in both interface
and flash memory form.

Regarding the interface, it has been revealed that the block inter-
face has an ever-rising performance and cost tax [12, 13, 22]. Zoned
Namespace (ZNS) [12] is an emerging interface aiming at the above
tax and has gained attention from both academia and industry. ZNS
abstracts the flash space into zones, which can be read randomly
but can only be written sequentially. Each zone maintains a write
pointer to record the next-written location, and the write request
not aligned with the write pointer will be rejected. A zone can only
be reclaimed via reset from the host, after which the write pointer
is reverted to the start of the zone. The ZNS interface couples host
behaviors with the flash characteristics, significantly eliminating
the block interface tax (see §2.1). In addition, the SSD still retains
sophisticated flash media management, such as wear-leveling and
ECC correction, making it easier for the host to standardize and
adapt. The ZNS-based storage system (including ZNS SSDs and
ZNS-compatible host software) has demonstrated the potential to
be deployed in cloud environments as a low-cost solution [11, 45].

In addition to the interface advancements, flash memory tech-
nology continues evolving towards denser forms, where multiple
bits can be encoded in a flash memory cell [29, 34, 36]. For example,
SLC, MLC, TLC, and QLC represent that 1, 2, 3, and 4 bit(s) are
encoded in a cell, respectively. Storing more bits per cell can drasti-
cally increase capacity and reduce cost but at the trade of severe
performance and endurance degradation. It has been characterized
that QLC bears 20∼60× page program latency than SLC, and the P/E
cycles of QLC are only about 1% of those of SLC [36]. This indicates
that, even with high capacity and low cost, adopting QLC SSDs
faces significant challenges in terms of performance and endurance.
To mitigate these challenges, modern high-density SSDs typically
employ a hybrid architecture [1, 3, 4], which maintains an SLC
cache by programming a portion of QLC flash blocks in SLC mode
in a host-transparent manner. SLC cache not only provides higher
performance but also significantly improves the flash endurance.
Specifically, hot data with shorter lifetimes often remains in the
SLC cache until destage, and only cold data with longer lifetimes
will be migrated to QLC blocks when the SLC cache is not sufficient.

Although the hybrid SSD architecture has been extensively ex-
plored in the past, none of them discussed how to design the ar-
chitecture of the hybrid ZNS SSD. It is crucial for ZNS-based stor-
age systems to employ the hybrid architecture for both low-cost
merit and better performance/endurance. However, based on our in-
depth investigation, the host-transparent approach oriented from
the mainstream hybrid SSD exhibits high inefficiencies on ZNS. The
major obstacle is that, due to the limited SSD-internal DRAM, ZNS
SSD is only capable of maintaining a coarse-grained zone-leveling
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mapping table. Such coarse granularity not only restricts the poten-
tial of migrating data in a fine-grained manner but also confines the
host capability for cross-layer optimization (see §2.3). Therefore,
the host-transparent hybrid ZNS SSD inevitably leads to a high
performance and endurance overhead.

In this paper, we explore the idea of shifting heterogeneous flash
management (i.e., SLC and QLC) from the device to the host, seam-
lessly integrating with the existing zone management. To this end,
we present ZnH2, an augmented ZNS-based storage system with
Host-managed Heterogeneous zones. ZnH2 incorporates two major
components: (1) HZNS SSD and (2) HZNS-aware host software. We
first propose HZNS (H: heterogeneous), an advanced ZNS interface,
which extends both command and device attributes for the host to
manage heterogeneous zones explicitly. To unleash the full poten-
tial of HZNS, we incorporate a fine-grained and semantic-guided
data migration process and revamp the zone allocation policy in
the HZNS-aware host software. To minimize the data transfer over-
head, we also offload the migration process to the SSD by leveraging
NVMe Simple Copy [35]. We build ZnH2 based on RocksDB [7] and
its filesystem backend ZenFS [9], where RocksDB is the mainstream
application of ZNS. Specifically, we implement the HZNS-aware
logic in ZenFS, and thus RocksDB (and also the upper layers of
RocksDB) can benefit without any code modification. Evaluation
on YCSB benchmark tool [14] shows that, compared to the host-
transparent counterpart, ZnH2 can improve the load performance
by up to 28.9% and reduce the QLC write volume by at most 61.1%.
ZnH2 also demonstrates the throughput improvement with an av-
erage of 9.5% in real YCSB macro-benchmarks. We open-source
ZnH2 for public use on GitHub1.

Our contributions can be summarized as follows:
• We perform a deep investigation of why the current host-
transparent hybrid SSD architecture is not efficient on ZNS
(see §2.3).

• We propose ZnH2, a novel augmented ZNS-based storage
system with host-managed heterogeneous zones, featuring
both new ZNS interface design and new software manage-
ment policies (see §3).

• Webuild ZnH2 with RocksDB, ZenFS, and an emulatedHZNS
SSD, and evaluation on YCSB benchmarks is quite encourag-
ing (see §4).

The remainder of this paper is organized as follows. The back-
ground and motivation are presented in §2. The design of ZnH2,
including HZNS and HZNS-aware software adaptations, are demon-
strated in §3. The evaluation and conclusion are shown in §4 and §5,
respectively.

2 BACKGROUND AND MOTIVATION
2.1 Zoned Namespace (ZNS)
To get around the block interface tax, the Zoned Namespace (ZNS)
interface was proposed and has drawn broad interest from academia
and industry. How ZNS avoids the block interface tax can be sum-
marized in three aspects. First, due to the sequential write con-
straint of ZNS, the logical and physical addresses in a zone are
naturally coupled. Thus, ZNS SSD does not require the fine-grained

1https://github.com/yingjia-wang/ZnH2

page-level mapping table, which greatly reduces the equipment of
SSD-internal DRAM. Second, ZNS eliminates device-side garbage
collection (GC) and shifts GC control upper to the host. There-
fore, ZNS SSD needs a much smaller flash over provision (OP) to
counteract GC-caused performance degradation. Third, with zone
abstraction, the host can holistically optimize data placement, e.g.,
place data with different lifetimes into different zones, leading to
better overall performance and system write amplification.

Nevertheless, the performance and cost advantages of ZNS are
built on the necessity for host cooperation. Many host software
in different layers has supported ZNS, including device mapper
(e.g., dm-zoned [5]), filesystem (e.g., F2FS [23], BtrFS [33]) and
application (e.g., RocksDB [12], Ceph [16]). Among them, device
mapper offers the highest degree of compatibility as all applications
and filesystems can transparently run on ZNS SSDs. On the other
hand, achieving compatibility directly in applications demonstrates
the most efficiency because there is no semantic isolation on the
I/O stack to restrict host-level optimization.

While the ZNS ecosystem is continuously enriched, the ZNS
interface itself is also being revisited [17, 18, 30, 31, 37, 38]. To
avoid the high data transfer overhead between host and device,
ZNS+ [17] enables log-structured filesystems to offload data copy
during segment compaction into the device. ZNS+ also supports
overwriting a zone to reduce host GCs. eZNS [31] focuses on multi-
tenant environments and exposes the relationship between zones
and flash parallel units (e.g., die) to the host. In this way, host soft-
ware can holistically allocate and manage zones to improve overall
flash bandwidth usage and reduce inter-tenant I/O interference.
oZNS [38] unlocks the strict sequential write constraint of ZNS and
proposes an indirection layer inside SSDs for the goal of improving
the SSD performance under small-size writes.

2.2 High-Density Flash Memory and Hybrid
SSD Architecture

Based on the number of bits a flash cell can store, flash memory is
characterized into different types. For example, SLC (single-level
cell), MLC (multi-level cell), TLC (triple-level cell), and QLC (quad-
level cell) represent that 1, 2, 3, and 4 bit(s) are encoded in a cell,
respectively. When each flash cell stores more than one bit, different
flash pages exhibit varied performance and endurance patterns. For
example, QLC has four types of pages: L (lower), CL (central lower),
CU (central upper), and U (upper). The read and write latency of
the upper page can reach 2.0× and 6.1× compared to those of the
lower page [19].

With distinct merits of different cell types, hybrid SSD architec-
ture supporting heterogeneous flash (i.e., SLC and QLC) is com-
monly adopted in commercial QLC SSDs [26]. Prior works on hybrid
SSDs are mainly based on the block interface, and these SSDs in-
ternally manage an SLC cache and data migration (from SLC to
QLC) in a host-transparent manner. The SLC cache consists of a
fraction of QLC blocks that store only one bit per cell to achieve
SLC-like performance and endurance [2]. Typically, the SLC cache
ratio is decreased as the SSD space usage grows. For example, Ta-
ble 1 shows the SLC cache ratio setting of a commercial SSD Intel
660p [1]. When the SLC cache ratio exceeds the threshold, FTL will
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Table 1: The SLC cache ratio of Intel 660p SSD under different
space usage [1].

Space Usage (%) 0∼
20

20∼
30

30∼
40

40∼
50

50∼
60

60∼
70

70∼
100

SLC Cache (%) 56 50 40 30 25 20 10

continuously migrate valid data in SLC blocks to QLC blocks until
the ratio falls below.

Previous works have extensively studied the different aspects of
hybrid SSD architecture. Numerous works propose modeling-based
or reinforcement-learning-based techniques to adjust the SLC cache
ratio dynamically [20, 36, 39, 41, 43]. In addition, Shi et al. suggest
writing data directly to QLC when write traffic is high and miti-
gating performance degradation during GCs by reverting a certain
portion of QLC blocks to SLC [34]. Li et al. propose to identify fre-
quently accessed flash pages andmigrate them to the SLC cache [27].
Zhang et al. advocate that the distribution of the SLC cache should
fully utilize the internal flash parallelism [44]. There are also works
targeting hybrid SSDs based on different interfaces [24, 28]. For ex-
ample, Lee et al. coordinate SLC and MLC regions in the filesystem
layer based upon the open-channel SSDs [24]. For multi-streamed
SSDs, Lim et al. separate data and parity into different streams in
SSD RAIDs and write them in MLC and SLC, respectively [28].

2.3 Motivation
Different from existing works, this paper makes the first attempt
to explore the hybrid SSD architecture based on the emerging ZNS
interface. Otherwise, even with a magnified SSD capacity, the pure
QLC ZNS SSD would suffer from deficient performance and en-
durance, making it less practical to deploy. Typically, hybrid SSDs
are based on the traditional block interface and thus adopt a host-
transparent approach for managing SLC cache and data migration.
It indicates that the hybrid SSD based on the ZNS interface could
also follow this approach, which can attain full compatibility with
the existing ZNS ecosystem and thus speed up the deployment.

However, we examine that this host-transparent approach is
highly inefficient for ZNS. For simplicity, we refer to the hybrid
ZNS SSD employing this host-transparent approach as DM Hybrid
(DM: device-managed) in the following of this paper. The key ob-
stacle of DM Hybrid is that ZNS demands limited SSD-internal
DRAM for low cost (e.g., 10∼20× smaller than the block-interface
SSD [10]) and thereby only maintains a coarse-grained zone-level
mapping table. Such coarse granularity, unfortunately, restricts the
potential of migrating data in a fine-grained manner. Furthermore,
the decoupling with existing zone management (which is located
at the host) incurs semantic isolation, such as data validity and
lifetime, making coarse-grained migration even worse due to the
lack of cross-layer optimization.

We use Figure 1(a) to illustrate the above problems by introducing
how DM Hybrid manages heterogeneous zones (i.e., SLC and QLC
zones) and performs data migration. During data migration, DM
Hybrid first (1) selects an SLC zone to reclaim and then (2) migrates
all data inside to a QLC zone. In the first step, to select an SLC
zone, hybrid ZNS SSD can only refer to some rough statistics of
zones (e.g., last accessed time). In the second step, data can only be

Figure 1: Comparison of device-managed (DM) and host-
managed (HM) hybrid ZNS SSDs. The green and gray colors
indicate whether the data is valid or not from the perspective
of device or host.

migrated based on zone granularity; both valid and invalid data are
forced to be migrated due to unknown data validity information
(i.e., what data is valid or invalid in a zone). Hence, DM Hybrid
with the above two steps inevitably results in high performance
and write amplification overhead.

Such overhead becomes much more significant when a huge gap
exists between zone capacity and data unit of software, resulting
in severe valid/invalid data mixing and lifetime differences. Specifi-
cally, the capacity in a zone can reach a few GBs [12, 40], but the
software of ZNS SSDs typically employs a small data unit to lessen
the reclamation overhead (e.g., in compaction). For example, the de-
fault sizes of an SSTable in RocksDB and a segment in F2FS are only
64MB [8] and 2MB [23], respectively. It is theoretically possible to
align the data unit with the zone capacity. However, this approach
is not desirable in practice because all related data must be read,
processed, and finally written during data reclamation, resulting in
high memory usage and runtime stalls [21, 32].

Although the host software could deliver additional statistics to
assist the ZNS SSD, it is non-trivial and sub-optimal to transfer such
multifaceted and dynamically-changed information constantly. In
this paper, we explore shifting heterogeneous zone management
from the device to the host (i.e., HMHybrid in Figure 1(b), HM: host-
managed), which can well resolve the aforementioned issues. Specif-
ically, host software can simply consult the already-maintained file
mapping for data semantics (e.g., validity, lifetime), which can be
used to assist the data migration process. As shown in Figure 1(b),
HM Hybrid can select files for migration based on their semantics.
Besides, the host can only migrate valid data and prioritize migrat-
ing data with longer lifetimes with negligible additional overhead.

3 ZnH2: AN AUGMENTED ZNS-BASED
STORAGE SYSTEM

3.1 System Overview
We propose ZnH2, an augmented ZNS-based storage system with
Host-managedHeterogeneous zones. The system overview is shown
in Figure 2. ZnH2 comprises two major components: (1) HZNS
SSD and (2) HZNS-aware host software (e.g., RocksDB and ZenFS).
Specifically, HZNS (H: heterogeneous) is an advanced ZNS interface
that extends both command and device attributes for the host to
explicitly manage heterogeneous zones. In addition, HZNS-aware
host software integrates new policies on data migration and zone
allocation, to unleash the full potential of HZNS.
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Figure 2: Overview of ZnH2.

The key rationale of our proposal is to seamlessly couple the het-
erogeneous zone management with the existing zone management
in the host software. By doing so, HZNS-aware host software can
leverage the rich host-level semantics and thus accomplish a fine-
grained and semantic-guided data migration, leading to increased
overall performance and extended SSD lifespan. One noteworthy is-
sue of host-managed data migration, compared to device-managed,
is that data requires additional transfers between host and device,
which adversely impacts performance and energy efficiency. We
resolve this problem by offloading the migration process to the
SSD using NVMe Simple Copy [35]. Regarding zone allocation,
HZNS-aware host software leverages the explicit heterogeneous
zone abstraction, which not only supports the host to open het-
erogeneous zones on demand but also provides a simple portal to
reduce double writes (i.e., from host to SLC and subsequently from
SLC to QLC).

In the following, we first introduce the detailed design of HZNS
in §3.2. We then demonstrate how RocksDB and ZenFS perform
explicit heterogeneous zone management as a showcase in §3.3.

3.2 Design of HZNS
We first propose HZNS, an advanced ZNS interface that enables
host software to manage heterogeneous zones explicitly. To this
end, HZNS is designed to have both command and device attribute
extensions, which are fully compatible with the existing ZNS speci-
fication.

3.2.1 Heterogeneous zones and flash mapping. Different from ZNS
SSDs that have a uniform zone abstraction, HZNS SSD exposes het-
erogeneous zone modes (e.g., SLC and QLC zones) for host software
to use. Therefore, accessing data in different modes of zones could
exhibit different performance and endurance characteristics.

In ZNS SSDs, zones are typically one-to-one mapped to a flash
superblock, which consists of flash blocks across multiple dies for
higher access performance. HZNS SSD also employs this strategy,
that is, each SLC or QLC zone is also mapped to an independent
flash superblock. However, even though SLC and QLC zones have

the same zone size, due to different numbers of bits stored per cell,
the capacity (i.e., available space for host software to use) of the SLC
zone is only 1/4 of that of the QLC zone. Assume a flash superblock
is 1GB, the capacity of the SLC zone and the QLC zone is 256MB
and 1GB, respectively.

3.2.2 Zone command extension. HZNS supports heterogeneous zone
open command that extends the existing zone open command to
support zone mode indication. The new command uses a reserved
bit of the zone management send command (e.g., bit 09 in command
dword 13 [6]). Except for this, other commands (e.g., read, write,
zone close, zone reset, and zone finish) remain unchanged from
those in ZNS SSDs and are not necessary to extend.

It is worth noting that ZNS SSDs support opening zones in
either explicit or implicit ways. Particularly, implicit open can be
automatically activated when trying to write an empty zone. For
HZNS, implicit open is only applied to SLC zones, and explicit open
must be invoked when opening a zone in QLC.

3.2.3 Device attribute extension. Due to limited SSD-internal re-
sources (e.g., DRAM), ZNS restricts the maximum number of zones
in open and active states by two device attributes: max open zone
and max active zone. Here, an active zone can be either open or
closed. Only open zones can accommodate write I/Os, while both
open and closed zones can serve read I/Os. Currently, ZNS SSD
products do not clearly differentiate them. For example, the West-
ern Digital ZN540, the commonly used TLC ZNS SSD in research,
has both max open/active zone values of 14 [12].

HZNS specifies two other device attributes: max open QLC zone
and max active QLC zone to restrict the maximum number of QLC
zones in open and active states. The reason for distinguishing QLC
is that an open/active QLC zone requires much higher memory
resources than the SLC counterpart due to more bits in a cell and
more complex flash programming [15, 42]. In evaluation, we rea-
sonably configure max open/active zone and max open/active QLC
zone to 14 and 9, respectively.

3.2.4 Discussions. HZNS extends the zone abstraction to expose
heterogeneous zone management to the host, and does not particu-
larly affect the techniques still managed inside the ZNS SSD (e.g.,
wear leveling, error correction).

With respect to wear leveling, although the host can now de-
termine the zone mode (i.e., SLC or QLC), wear leveling is still
transparently handled by the SSD. For example, HZNS SSD can
still periodically swap a portion of flash blocks in SLC and QLC
to balance the overall flash lifetime [36]. As for error correction,
flash blocks in host-managed SLC and QLC zones still adopt respec-
tive policies since high-density flash is more error-prone and thus
requires stronger correction codes [19].

3.3 Explicit Heterogeneous Zone Management:
A Showcase on RocksDB and ZenFS

On top of the HZNS SSD, we choose RocksDB [7], the mainstream
application of ZNS, and its filesystem plugin ZenFS [9] as a show-
case. RocksDB is a persistent key-value store from Facebook and
serves as the storage engine of many large-scale storage services,
websites, and upper-layer software. ZenFS provides end-to-end
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compatibility for ZNS and stores RocksDB files in zones. We im-
plement the HZNS-aware policies in ZenFS so that RocksDB (and
also the upper layers of RocksDB) can benefit from HZNS without
any code modification. For simplicity, in the following of this paper,
HZNS-aware ZenFS is abbreviated as H-ZenFS.

To manage heterogeneous zones explicitly and efficiently, H-
ZenFS introduces a new data migration process and revamps the
existing zone allocation process.

3.3.1 Data migration. H-ZenFS initiates a background thread to
periodically check the SLC cache ratio (5 seconds by default) and
perform data migration when the SLC cache fills up. In the follow-
ing, we first introduce three principles of how H-ZenFS performs
data migration. Then, we take them together and illustrate the
whole process of data migration.

The objective of the three principles is to take advantage of the
rich host-level semantics (i.e.,#1 and #2) as well as address a key
shortcoming of host-managed data migration (i.e.,#3). They are also
applicable to other ZNS-compatible host software.

#1: fine-granularity-based
#2: data-lifetime-guided
#3: simple-copy-optimized

Principle #1 points out the importance of fine-grained data mi-
gration because a small migration granularity could reduce data
lifetime differences and thus optimize the effect of hot/cold data
separation. H-ZenFS migrates data based on extent, the smallest
data management unit in ZenFS. Each file consists of one or more
extents, each of which has contiguous logical address space and
does not span across different zones. When data migration is trig-
gered, the information of extents can be simply extracted from the
latest filesystem snapshot2 with trivial additional overhead.

Principle #2 advocates prioritizing migrating data with a larger
lifetime when the SLC cache is not sufficient. Since the migration
is based on extent, H-ZenFS tags each extent in the snapshot with
an additional field: the lifetime of its corresponding file. When
data migration is triggered, H-ZenFS extracts and sorts the extents
based on their lifetime, and then prefers to migrate those with
larger lifetimes. If extents have the same lifetime, H-ZenFS prefers
the ones with the higher zone reclamation ratio. Here, the zone
reclamation ratio is defined as the invalid data capacity divided
by the total zone capacity. H-ZenFS prefers such extents because
the zones with higher reclamation ratios are considered to be fully-
invalidated and reused in the near future.

Principle #3 emphasizes the utilization of NVMe Simple Copy [35],
a new NVMe command that has been supported in Linux kernel
to reduce the overhead from host-managed data migration. The
process of Simple Copy is shown in Figure 3. Simple Copy migrates
data from multiple source LBA ranges to the destination LBA. Here,
the LBA range includes the source LBA and the data length in
logical pages. The primary drawback of host-managed data migra-
tion is that, despite host software knowing both the source and
destination addresses of data for migration, data must undergo
transfers (1) from device to host and (2) from host to device. This
would induce a large number of read/write operations, consuming
more host resources and energy and adversely affecting the system
2The snapshot in ZenFS stores the filesystem superblock information, the mapping of
files to extents, and the mapping of extents to zones for recovery purposes.

Figure 3: Comparison between existing host-side and simple-
copy-based data migration. The host should indicate source
LBA ranges and destination LBA in the Simple Copy com-
mand.

performance. By leveraging Simple Copy, H-ZenFS can offload data
migration to the SSD and avoid the above problems.

The whole process of data migration is described as follows.
Upon migration, H-ZenFS reads the latest filesystem snapshot, se-
lects valid extents based on their lifetimes and zone reclamation
ratios, and migrates them to the QLC zones. After the selected
extents are successfully rewritten, H-ZenFS persists the new loca-
tions and also updates the extent-to-zone mapping in the filesystem.
Therefore, the data read is only forwarded to the new location after
the mapping is updated. Since the persistence of the mapping is
performed in the background, the performance impact on RocksDB
is minimal. Besides, the metadata volume is also trivial compared
to the total data volume.

3.3.2 Zone allocation. The baseline ZenFS attempts to co-locate
files with similar lifetimes in the same zone. For a file to be written,
ZenFS tries to allocate a zone with a larger but closest lifetime
with the file lifetime, to avoid further lengthening the lifetime of
the zone. Here, the lifetime of a zone is defined as the maximum
lifetime of all files stored. If not found, ZenFS tries to open a new
zone, which is limited by the value of max open/active zone. If max
open/active zone reaches the upper limit, ZenFS finishes some zones
to release resources, after which these zones become full and can
not receive upcoming writes.

H-ZenFS shares most of the strategies in zone allocation com-
pared to the baseline ZenFS. The major difference is that, when a
new zone needs to be opened, H-ZenFS explicitly opens a QLC zone
when (1) the SLC cache is not sufficient and (2) the checking on
max open/active QLC zone is passed. Otherwise, H-ZenFS will still
open an SLC zone. When all zones are configured in SLC, H-ZenFS
can only use 25% of the SSD capacity. By opening more QLC zones,
H-ZenFS can gracefully gain more capacity to use as the stored
data volume increases (see §4.2).

With the explicit SLC and QLC zone abstraction, a key feature
of H-ZenFS is that large-lifetime data can be directly written to
the QLC zones. Thus, H-ZenFS has the merit of avoiding flash
bandwidth contention caused by double writes, especially when
the SSD capacity usage is high. The importance of this feature has
already been noticed in a previous work [34]. However, this is not
a trivial task in block-interface hybrid SSDs, which may have to
monitor the data traffic to determine whether the data is written in
SLC or QLC [34].
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Table 2: Configurations of FEMU HZNS/ZNS SSD. The SLC
and QLC latency setups refer to [43] and [19], respectively.

SSD Parameter Value
# Flash Channels/Dies 8/64
Flash Page/Block/Superblock Size 16KB/16MB/1GB
SSD Capacity 128GB
Zone Size 1GB
SLC/QLC Zone Capacity 256MB/1GB
Max Open/Active Zone 14/14
Max Open/Active QLC Zone 9/9
SLC Read/Write/Erase Latency 30𝜇s/160𝜇s/3ms
QLC Read Latency (L/CL/CU/U) 48𝜇s/64𝜇s/80𝜇s/96𝜇s
QLC Write Latency (L/CL/CU/U) 850𝜇s/2.3ms/3.7ms/5.2ms
QLC Erase Latency 3.5ms

4 EVALUATION
4.1 Experimental Setups
We implement both HZNS and ZNS in a popular NVMe SSD emula-
tor FEMU [25], which runs as a virtual machine with 32GB memory,
16 cores, and a Linux kernel of version 5.10.9. The virtual machine
runs on a physical server equipped with four 24-core/48-thread
Intel Xeon Platinum 8260 2.40 GHz CPU sockets. The SSD configu-
rations are summarized in Table 2, and SSDs with heterogeneous
zones (i.e., device-managed hybrid ZNS SSD and HZNS SSD, see
below) adopt the same SLC cache ratio setting from Intel 660p (see
Table 1) for a fair comparison.

We evaluate the following three schemes:
• QLC means that the hybrid architecture is not applied, and
all zones are programmed inQLC. That is, the vanilla RocksDB
and ZenFS are running on the pure QLC ZNS SSD.

• DM Hybrid means that the device is responsible for man-
aging heterogeneous zones in a host-transparent fashion.
That is, the vanilla RocksDB and ZenFS are running on the
device-managed hybrid ZNS SSD. The detailed methodology
of DM Hybrid is introduced in §2.3.

• HMHybrid is our proposed schemewhere the hostmanages
heterogeneous zones explicitly. This scheme corresponds to
ZnH2 (i.e., the RocksDB and HZNS-aware ZenFS are running
on the HZNS SSD).

We employ all the workloads in YCSB benchmark [14] for evalua-
tion with 1KB key-value pairs. The versions of RocksDB and ZenFS
are v7.9.2 and v2.1.2, respectively. The parameters in RocksDB are
configured to the default values, except for the SSTable size in the
sensitivity study (see §4.5). We use direct I/O to bypass the effect
of the kernel page cache.

4.2 Runtime Capacity and Usage of HZNS SSD
From the perspective of the host, HM Hybrid displays a unique
capacity-variant pattern due to the explicit heterogeneous zone
management. If the stored data volume continuously increases, HM
Hybrid can gracefully gain more available SSD capacity by opening
more QLC zones. To clearly visualize this feature, in Figure 4, we
depict the runtime statistics of (1) SSD available capacity, (2) total
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Figure 4: Runtime capacity and usage of HZNS SSD in YCSB
Load.
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Figure 5: Throughput and write volume in YCSB Load with
different numbers of inserted key-value pairs.

used capacity (both SLC and QLC), and (3) SLC used capacity. The
number of key-value pairs in YCSB Load is 30M.

We can see that, in the beginning, only 25% of the SSD capacity
is usable because HM Hybrid configures all zones in SLC by default.
After around 60 seconds, the SLC cache fills up for the first time,
and HM Hybrid starts to allocate QLC zones and migrate cold data
to them. As the amount of stored data grows, the proportion of the
SLC cache decreases and more data has to be stored in QLC. After
loading 30M key-value pairs, the SSD capacity and usage are as
large as 79.6% and 74.0%, respectively; and at this time, most of the
data (i.e., 97.3%) is stored in QLC.

4.3 Performance in YCSB Load Benchmark
We first investigate the advantages of HM Hybrid in terms of load
performance and SSD lifetime. Specifically, the impact on the SSD
lifetime is indicated by the QLC write volume and the total write
volume. Figure 5 demonstrates the throughput and write volume
in YCSB Load with 10M, 20M, and 30M inserted key-value pairs.

From Figure 5(a), we first observe that HM Hybrid outperforms
DM Hybrid and QLC in terms of throughput by 18.0%∼28.9% and
21.2%∼73.3%, respectively. Compared to DM Hybrid, the perfor-
mance gain mainly comes from the effective data migration, which
leads to a notable decrease in the QLC write volume. From Fig-
ure 5(b), HM Hybrid reduces the QLC write volume by 26.5%∼61.1%
and 35.2%∼80.3%, respectively, compared to DM Hybrid and QLC.
It can be seen from Figure 5(c) that the total write volume of HM
Hybrid exceeds that of QLC due to the existence of SLC cache.
However, since the endurance of SLC is significantly better than
QLC (e.g., 100× [36]), this is not a big concern.
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The above results indicate that, under different write loads, by en-
abling host software to manage heterogeneous zones explicitly, HM
Hybrid not only achieves higher write throughput but also greatly
lessens the endurance overhead. The merit of better endurance is
highly desirable in high-density flash deployment.

4.4 Performance in YCSB Macro-benchmarks
We also compare HM Hybrid with the other two schemes in real
YCSB macro-benchmarks with both skewed and uniform patterns.
Figure 6 demonstrates the throughput in YCSB macro-benchmarks,
and the characteristics of these benchmarks are introduced in the
caption of Figure 6. For each workload, we perform 5M operations
after loading 20M key-value pairs.

HM Hybrid exhibits an average of 9.5% and 18% higher through-
put than DM Hybrid and QLC, respectively. The SLC cache is the
cause of the performance gain over QLC. In contrast, the perfor-
mance improvement over DM Hybrid comes from the fine-grained
and semantic-guided data migration. HM Hybrid performs a more
accurate hot/cold data separation, so that more hot data can reside
in the SLC cache.

4.5 Extended Study
Tail latency in YCSB Load and YCSB C (read-only). For all
three schemes, we explore the tail latency in different percentiles.
Figure 7 demonstrates the tail latency in YCSB Load and YCSB C
(read-only). The workload settings are the same as §4.4.
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In both workloads, HM Hybrid can significantly reduce tail la-
tency compared to QLC but a small amount compared to DM Hy-
brid. Compared to QLC in 99.9p, HM Hybrid shows 46.1% and 59.4%
shorter latency in YCSB Load and YCSB C, respectively, while those
are 31.7% and 26.8% in 99.99p. Compared to DM Hybrid in 99.9p,
HM Hybrid has 4.6% and 30.6% shorter latency in YCSB Load and
YCSB C, respectively. The values in 99.99p are 6.0% and 4.3%.
Performance w/ and w/o Simple Copy.We explore the perfor-
mance impact of Simple Copy in HM Hybrid. Figure 8(a) demon-
strates the throughput in YCSB Load with and without Simple Copy.
When Simple Copy is disabled, the throughput of HM Hybrid is de-
creased by 3.8%, 9.0%, and 14.9% when inserting 10M, 20M, and 30M
key-value pairs, respectively. Without Simple Copy, HM Hybrid
needs to constantly read and write files, leading to the proliferation
of I/O operations and thus reducing the migration efficiency.
Performance under different SSTable sizes.We conduct a sensi-
tivity study on the performance improvement of HM Hybrid under
different SSTable sizes. Figure 8(b) demonstrates the throughput in
YCSB Load with 20M key-value pairs inserted.

HM Hybrid can achieve higher throughput compared to DM
Hybrid and QLC with an average of 25.7% and 32.1%, respectively.
The results show that HM Hybrid exhibits better load performance
across a wide range of SSTable size configurations.

5 CONCLUSION
This paper makes the first attempt to examine the architecture of
the hybrid SLC/QLC ZNS SSD. Based on our in-depth investiga-
tion, we present ZnH2, an augmented ZNS-based storage system
with host-managed heterogeneous zone management, incorporat-
ing both SSD firmware and host software designs. Our showcase
based on RocksDB and ZenFS well proofs the benefits of ZnH2 in
both performance and SSD lifespan. We believe that host-managed
heterogeneous zones can bring more new opportunities and chal-
lenges to the storage system, and we hope that ZnH2 can be the
cornerstone of future research.
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